A306885 Minimal near-Wieferich A-value (absolute) for all primes in the interval [10^n, 10^(n+1)].
1, 1, 1, 0, 2, 5, 6, 17, 1, 6, 1, 19, 6, 2, 2, 10, 26
Offset: 0
Examples
For n = 1: The A-values for the primes in the interval [10^1, 10^2] are 3, 5, -2, 8, -3, 14, 3, 18, -9, 9, 22, -18, -4, -18, -5, 1, 28, -30, -24, 3, -20. The smallest of these, by absolute value, is 1, so a(1) = 1.
Links
- R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Mathematics of Computation 66 (1997), 433-449.
- J. Knauer and J. Richstein, The continuing search for Wieferich primes, Mathematics of Computation 74 (2005), 1559-1563.
- PrimeGrid, WW stats
- Sysadm@Nbg and PrimeGrid, PRPNet findlist for project WFS [Archived version at the Wayback Machine].
Programs
-
PARI
a258367(n) = abs(centerlift(Mod(2, n^2)^((n-1)/2))\/n) a(n) = my(minm=nextprime(10^n)); forprime(p=10^n, 10^(n+1), if(p!=2, if(a258367(p) < minm, minm=a258367(p)))); minm
Extensions
a(15)-a(16) from Felix Fröhlich, Apr 03 2021
Comments