cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306911 Expansion of Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^j)^j.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 2, 2, 1, 2, 1, 2, 5, 4, 7, 9, 7, 10, 9, 9, 13, 13, 18, 27, 31, 42, 53, 61, 71, 83, 95, 98, 115, 131, 147, 176, 207, 258, 313, 395, 481, 581, 721, 848, 1014, 1179, 1367, 1586, 1804, 2064, 2338, 2698, 3083, 3559, 4142, 4819, 5732, 6768, 8036, 9582, 11426
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 16 2019

Keywords

Crossrefs

Programs

  • Maple
    N:= 100:
    S:= series(add(x^(k^2)*mul((1+x^j)^j,j=1..min(k,N-k^2)),k=0..floor(sqrt(N))), x, N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Apr 10 2019
  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k^2) Product[(1 + x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]