cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306912 a(n) = 1 + Sum_{k=1..n} Sum_{d|k} mu(k/d)*p(d), where p(d) = number of partitions of d (A000041).

Original entry on oeis.org

1, 2, 3, 5, 8, 14, 21, 35, 52, 79, 113, 168, 231, 331, 450, 617, 826, 1122, 1469, 1958, 2540, 3315, 4260, 5514, 6995, 8946, 11280, 14260, 17840, 22404, 27790, 34631, 42749, 52834, 64846, 79708, 97234, 118870, 144394, 175476, 212170, 256752, 309007, 372267, 446437, 535368
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 16 2019

Keywords

Comments

Partial sums of A000837.

Crossrefs

Programs

  • Mathematica
    Table[1 + Sum[Sum[MoebiusMu[k/d] PartitionsP[d], {d, Divisors[k]}], {k, 1, n}], {n, 0, 45}]
  • PARI
    a(n) = 1 + sum(k=1, n, sumdiv(k, d, moebius(k/d)*numbpart(d))); \\ Michel Marcus, Mar 16 2019

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)). - Vaclav Kotesovec, Mar 17 2019