A306934 Coefficients of q-expansion of Eisenstein series G_{5/2}(tau) multiplied by 120.
1, -10, 0, 0, -70, -48, 0, 0, -120, -250, 0, 0, -240, -240, 0, 0, -550, -480, 0, 0, -528, -480, 0, 0, -720, -1210, 0, 0, -960, -720, 0, 0, -1080, -1440, 0, 0, -1750, -1200, 0, 0, -1680, -1920, 0, 0, -1680, -1488, 0, 0, -2160, -3370, 0, 0, -2640, -1680, 0, 0, -2400, -3360, 0, 0, -2880, -2640
Offset: 0
Keywords
Links
- H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), no. 3, 271-285.
- X. Wang and D. Pei, Modular Forms with Integral and Half-Integral Weights, Science Press Beijing, Springer Berlin Heidelberg, 2012. x+432 pp.
- D. Zagier, Modular Forms of One Variable, Notes based on a course given in Utrecht, 1991. See page 50 (erroneously gives a(5) = -72).
Programs
-
Sage
def a(n): if n==0: return 1 if (n%4) not in [0,1]: return 0 D = Integer(n).squarefree_part() f = Integer(sqrt(n/D)) if (D%4) not in [0,1]: D, f = 4*D, f//2 X = kronecker_character(D) s = sum([moebius(d)*X(d)*d*sigma(f/d, 3) for d in f.divisors()]) return round((120*X.lfunction(100)(-1)*s).real()) # Robin Visser, Feb 24 2024
Extensions
Corrected and more terms from Robin Visser, Feb 24 2024