A306945 Triangular array T(n,k) read by rows: T(n,k) is the number of degree n monic polynomials in GF(2)[x] with exactly k squarefree factors in its unique factorization into irreducible polynomials.
2, 1, 1, 2, 2, 3, 4, 1, 6, 8, 2, 9, 16, 7, 18, 30, 14, 2, 30, 60, 34, 4, 56, 114, 72, 14, 99, 220, 156, 36, 1, 186, 422, 320, 90, 6, 335, 817, 671, 207, 18, 630, 1564, 1364, 484, 54, 1161, 3023, 2787, 1070, 148, 3, 2182, 5818, 5624, 2362, 386, 12, 4080, 11240, 11357, 5095, 947, 49
Offset: 1
Examples
Triangular array T(n,k) begins: 2; 1, 1; 2, 2; 3, 4, 1; 6, 8, 2; 9, 16, 7; 18, 30, 14, 2; 30, 60, 34, 4; 56, 114, 72, 14; 99, 220, 156, 36, 1; ...
Links
- Alois P. Heinz, Rows n = 1..500, flattened
Programs
-
Maple
with(numtheory): g:= proc(n) option remember; `if`(n=0, 1, add(mobius(n/d)*2^d, d=divisors(n))/n) end: b:= proc(n, i) option remember; expand(`if`(n=0, x^n, `if`(i<1, 0, add(binomial(g(i), j)*b(n-i*j, i-1)*x^j, j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)): seq(T(n), n=1..20); # Alois P. Heinz, May 28 2019
-
Mathematica
nn = 16; a = Table[1/n Sum[2^d MoebiusMu[n/d], {d, Divisors[n]}], {n, 1, nn}]; Map[Select[#, # > 0 &] &, Drop[CoefficientList[ Series[Product[ (1 + u z^k)^a[[k]], {k, 1, nn}], {z, 0, nn}], {z, u}], 1]] // Grid
Formula
G.f.: Product_{k>=1} (1 + y*x)^A001037(k).
Comments