A306955 Let f map k to the sum of the factorials of the digits of k (A061602); sequence lists numbers such that f(f(f(k)))=k.
1, 2, 145, 169, 1454, 40585, 363601
Offset: 1
Examples
The map f sends 169 to 363601 to 1454 to 169 ...
References
- P. Kiss, A generalization of a problem in number theory, Math. Sem. Notes Kobe Univ., 5 (1977), no. 3, 313-317. MR 0472667 (57 #12362).
Links
- P. Kiss, A generalization of a problem in number theory, [Hungarian], Mat. Lapok, 25 (No. 1-2, 1974), 145-149.
- G. D. Poole, Integers and the sum of the factorials of their digits, Math. Mag., 44 (1971), 278-279, [JSTOR].
- H. J. J. te Riele, Iteration of number-theoretic functions, Nieuw Archief v. Wiskunde, (4) 1 (1983), 345-360. See Example I.1.b.
Crossrefs
Programs
-
Mathematica
f[k_] := Total[IntegerDigits[k]!]; Select[Range[400000], Nest[f, #, 3] == # &] (* Amiram Eldar, Mar 17 2019 *)
-
PARI
a061602(n) = my(d=digits(n)); sum(i=1, #d, d[i]!) is(n) = a061602(a061602(a061602(n)))==n \\ Felix Fröhlich, May 18 2019
Comments