cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A305575 List points (x,y) having integer coordinates, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives x-coordinates.

Original entry on oeis.org

0, 1, 0, -1, 0, 1, -1, -1, 1, 2, 0, -2, 0, 2, 1, -1, -2, -2, -1, 1, 2, 2, -2, -2, 2, 3, 0, -3, 0, 3, 1, -1, -3, -3, -1, 1, 3, 3, 2, -2, -3, -3, -2, 2, 3, 4, 0, -4, 0, 4, 1, -1, -4, -4, -1, 1, 4, 3, -3, -3, 3, 4, 2, -2, -4, -4, -2, 2, 4, 5, 4, 3, 0, -3, -4, -5, -4, -3, 0, 3, 4, 5, 1, -1
Offset: 0

Views

Author

Hugo Pfoertner, Jun 05 2018

Keywords

Comments

Similar to A283307, but with secondary sorting by polar angle.

Examples

			The first points (listing [polar angle phi,x,y]) are:
r^2
  0: [0.0*Pi,0,0];
  1: [0.0*Pi,1,0], [0.5*Pi,0,1], [1.0*Pi,-1,0], [1.5*Pi,0,-1];
  2: [0.25*Pi,1,1], [0.75*Pi,-1,1], [1.25*Pi,-1,-1], [1.75*Pi,1,-1];
  4: [0.0*Pi,2,0], [0.5*Pi,0,2], [1.0*Pi,-2,0], [1.5*Pi,0,-2];
  5: [0.148*Pi,2,1], [0.352*Pi,1,2], [0.648*Pi,-1,2], [0.852*Pi,-2,1],
   [1.148*Pi,-2,-1], [1.352*Pi,-1,-2], [1.648*Pi,1,-2], [1.852*Pi,2,-1];
  8: [0.25*Pi,2,2], [0.75*Pi,-2,2], [1.25*Pi,-2,-2], [1.75*Pi,2,-2].
		

Crossrefs

For the y-coordinates see A305576.

Programs

  • PARI
    atan2(y,x)=if(x>0,atan(y/x),if(x==0,if(y>0,Pi/2,-Pi/2),if(y>=0,atan(y/x)+Pi,atan(y/x)-Pi)));
    angle(x,y)=(atan2(y,x)+2*Pi)%(2*Pi);
    {a004018(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3)))};
    xyselect=1; \\ change to 2 for A305576
    print1(0,", ");for(s=1,25,my(r=a004018(s));if(r>0,my(v=matrix(r,3),w=vector(r),m=sqrtint(s),L=0);for(i=-m,m,my(k=s-i^2,kk);if(k==0,v[L++,1]=i;v[L,2]=0;v[L,3]=angle(i,0),if(issquare(k),kk=sqrtint(k);forstep(j=-kk,kk,kk+kk,v[L++,1]=i;v[L,2]=j;v[L,3]=angle(i,j)))));p=vecsort(v[,3],,1);for(k=1,L,w[k]=v[p[k],xyselect]);for(k=1,L,print1(w[k],", ")))); \\ Hugo Pfoertner, May 12 2019

A305576 List points (x,y) having integer coordinates, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives y-coordinates.

Original entry on oeis.org

0, 0, 1, 0, -1, 1, 1, -1, -1, 0, 2, 0, -2, 1, 2, 2, 1, -1, -2, -2, -1, 2, 2, -2, -2, 0, 3, 0, -3, 1, 3, 3, 1, -1, -3, -3, -1, 2, 3, 3, 2, -2, -3, -3, -2, 0, 4, 0, -4, 1, 4, 4, 1, -1, -4, -4, -1, 3, 3, -3, -3, 2, 4, 4, 2, -2, -4, -4, -2, 0, 3, 4, 5, 4, 3, 0, -3, -4, -5, -4, -3, 1
Offset: 0

Views

Author

Hugo Pfoertner, Jun 05 2018

Keywords

Comments

Similar to A283308, but with secondary sorting by polar angle.

Examples

			See A305575.
		

Crossrefs

For the x-coordinates see A305575.

Programs

A307011 First coordinate in a redundant hexagonal coordinate system of the points of a counterclockwise spiral on an hexagonal grid. Second and third coordinates are given in A307012 and A345978.

Original entry on oeis.org

0, 1, 0, -1, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -2, -1, 0, 1, 2, 3, 3, 3, 2, 1, 0, -1, -2, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 4, 4, 4, 4, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5
Offset: 0

Views

Author

Hugo Pfoertner, Mar 19 2019

Keywords

Comments

From Peter Munn, Jul 22 2021: (Start)
The points of the spiral are equally the points of a hexagonal lattice, the points of an isometric (triangular) grid and the center points of the cells of a honeycomb (regular hexagonal tiling or grid). The coordinate system can be described using 3 axes that pass through spiral point 0 and one of points 1, 2 or 3. Along each axis, one of the coordinates is 0.
a(n) is the signed distance from spiral point n to the axis that passes through point 2. The distance is measured along either of the lines through point n that are parallel to one of the other 2 axes and the sign is such that point 1 has positive distance.
This coordinate can be paired with either of the other coordinates to form oblique coordinates as described in A307012. Alternatively, all 3 coordinates can be used together, symmetrically, as described in A345978.
There is a negated variant of the 3rd coordinate, which is the conventional sense of this coordinate for specifying (with the 2nd coordinate) the Eisenstein integers that can be the points of the spiral when it is embedded in the complex plane. See A307013.
(End)

Crossrefs

Numbers on the spokes of the spiral: A000567, A028896, A033428, A045944, A049450, A049451.
Positions on the spiral that correspond to Eisenstein primes: A345435.

Programs

  • PARI
    r=-1;d=-1;print1(m=0,", ");for(k=0,8,for(j=1,r,print1(s,", "));if(k%2,,m++;r++);for(j=-m,m+1,if(d*j>=-m,print1(s=d*j,", ")));d=-d)

Extensions

Name revised by Peter Munn, Jul 08 2021

A307014 List coordinates (x,y) of the points in an hexagonal grid, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives the first coordinate in a barycentric coordinate system.

Original entry on oeis.org

0, 1, 0, -1, -1, 0, 1, 1, -1, -2, -1, 1, 2, 2, 0, -2, -2, 0, 2, 2, 1, -1, -2, -3, -3, -2, -1, 1, 2, 3, 3, 3, 0, -3, -3, 0, 3, 2, -2, -4, -2, 2, 4, 3, 1, -1, -3, -4, -4, -3, -1, 1, 3, 4, 4, 4, 0, -4, -4, 0, 4, 3, 2, -2, -3, -5, -5, -3, -2, 2, 3, 5, 5, 4, 1
Offset: 0

Views

Author

Hugo Pfoertner, Mar 21 2019

Keywords

Comments

Cartesian coordinates (x,y) of the grid points are converted to barycentric coordinates (i,j,k) by i = x - y/sqrt(3), j = 2*y/sqrt(3), k = x + y/sqrt(3). The sequence gives i. j is given in A307016, k is given in A307017.
The sorting by polar angle affects the grid points in the shells of size A035019, starting at indices given by A038590.

Crossrefs

Programs

  • PARI
    \\ See Link
    \\ To create the data of this sequence load program from file and call
    a307014_16(5, 4) \\ Hugo Pfoertner, Nov 07 2023

A307016 List coordinates (x,y) of the points in an hexagonal grid, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives the second coordinate in a barycentric coordinate system.

Original entry on oeis.org

0, 0, 1, 1, 0, -1, -1, 1, 2, 1, -1, -2, -1, 0, 2, 2, 0, -2, -2, 1, 2, 3, 3, 2, 1, -1, -2, -3, -3, -2, -1, 0, 3, 3, 0, -3, -3, 2, 4, 2, -2, -4, -2, 1, 3, 4, 4, 3, 1, -1, -3, -4, -4, -3, -1, 0, 4, 4, 0, -4, -4, 2, 3, 5, 5, 3, 2, -2, -3, -5, -5, -3, -2, 1
Offset: 0

Views

Author

Hugo Pfoertner, Mar 21 2019

Keywords

Comments

Cartesian coordinates (x,y) of the grid points are converted to barycentric coordinates (i,j,k) by i = x - y/sqrt(3), j = 2*y/sqrt(3), k = x + y/sqrt(3). The sequence gives j. i is given in A307014, k is given in A307017.

Crossrefs

Programs

  • PARI
    \\ See Link
    \\ To create the data of this sequence load program from file and call
    a307014_16(5, 6) \\ Hugo Pfoertner, Nov 07 2023
Showing 1-5 of 5 results.