A305575
List points (x,y) having integer coordinates, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives x-coordinates.
Original entry on oeis.org
0, 1, 0, -1, 0, 1, -1, -1, 1, 2, 0, -2, 0, 2, 1, -1, -2, -2, -1, 1, 2, 2, -2, -2, 2, 3, 0, -3, 0, 3, 1, -1, -3, -3, -1, 1, 3, 3, 2, -2, -3, -3, -2, 2, 3, 4, 0, -4, 0, 4, 1, -1, -4, -4, -1, 1, 4, 3, -3, -3, 3, 4, 2, -2, -4, -4, -2, 2, 4, 5, 4, 3, 0, -3, -4, -5, -4, -3, 0, 3, 4, 5, 1, -1
Offset: 0
The first points (listing [polar angle phi,x,y]) are:
r^2
0: [0.0*Pi,0,0];
1: [0.0*Pi,1,0], [0.5*Pi,0,1], [1.0*Pi,-1,0], [1.5*Pi,0,-1];
2: [0.25*Pi,1,1], [0.75*Pi,-1,1], [1.25*Pi,-1,-1], [1.75*Pi,1,-1];
4: [0.0*Pi,2,0], [0.5*Pi,0,2], [1.0*Pi,-2,0], [1.5*Pi,0,-2];
5: [0.148*Pi,2,1], [0.352*Pi,1,2], [0.648*Pi,-1,2], [0.852*Pi,-2,1],
[1.148*Pi,-2,-1], [1.352*Pi,-1,-2], [1.648*Pi,1,-2], [1.852*Pi,2,-1];
8: [0.25*Pi,2,2], [0.75*Pi,-2,2], [1.25*Pi,-2,-2], [1.75*Pi,2,-2].
-
atan2(y,x)=if(x>0,atan(y/x),if(x==0,if(y>0,Pi/2,-Pi/2),if(y>=0,atan(y/x)+Pi,atan(y/x)-Pi)));
angle(x,y)=(atan2(y,x)+2*Pi)%(2*Pi);
{a004018(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3)))};
xyselect=1; \\ change to 2 for A305576
print1(0,", ");for(s=1,25,my(r=a004018(s));if(r>0,my(v=matrix(r,3),w=vector(r),m=sqrtint(s),L=0);for(i=-m,m,my(k=s-i^2,kk);if(k==0,v[L++,1]=i;v[L,2]=0;v[L,3]=angle(i,0),if(issquare(k),kk=sqrtint(k);forstep(j=-kk,kk,kk+kk,v[L++,1]=i;v[L,2]=j;v[L,3]=angle(i,j)))));p=vecsort(v[,3],,1);for(k=1,L,w[k]=v[p[k],xyselect]);for(k=1,L,print1(w[k],", ")))); \\ Hugo Pfoertner, May 12 2019
A305576
List points (x,y) having integer coordinates, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives y-coordinates.
Original entry on oeis.org
0, 0, 1, 0, -1, 1, 1, -1, -1, 0, 2, 0, -2, 1, 2, 2, 1, -1, -2, -2, -1, 2, 2, -2, -2, 0, 3, 0, -3, 1, 3, 3, 1, -1, -3, -3, -1, 2, 3, 3, 2, -2, -3, -3, -2, 0, 4, 0, -4, 1, 4, 4, 1, -1, -4, -4, -1, 3, 3, -3, -3, 2, 4, 4, 2, -2, -4, -4, -2, 0, 3, 4, 5, 4, 3, 0, -3, -4, -5, -4, -3, 1
Offset: 0
A307011
First coordinate in a redundant hexagonal coordinate system of the points of a counterclockwise spiral on an hexagonal grid. Second and third coordinates are given in A307012 and A345978.
Original entry on oeis.org
0, 1, 0, -1, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -2, -1, 0, 1, 2, 3, 3, 3, 2, 1, 0, -1, -2, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 4, 4, 4, 4, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5
Offset: 0
- Hugo Pfoertner, Table of n, a(n) for n = 0..10034
- Margherita Barile, Oblique Coordinates, entry in Eric Weisstein's World of Mathematics.
- HandWiki, Hexagonal Lattice.
- Peter Munn, Illustration of signed distance of spiral points.
- Hugo Pfoertner, Illustration of A307012 vs A307011, spiral.
- Hugo Pfoertner, Illustration of A345978 vs A307011, spiral.
- Wikipedia, Signed distance function.
Positions on the spiral that correspond to Eisenstein primes:
A345435.
-
r=-1;d=-1;print1(m=0,", ");for(k=0,8,for(j=1,r,print1(s,", "));if(k%2,,m++;r++);for(j=-m,m+1,if(d*j>=-m,print1(s=d*j,", ")));d=-d)
A307014
List coordinates (x,y) of the points in an hexagonal grid, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives the first coordinate in a barycentric coordinate system.
Original entry on oeis.org
0, 1, 0, -1, -1, 0, 1, 1, -1, -2, -1, 1, 2, 2, 0, -2, -2, 0, 2, 2, 1, -1, -2, -3, -3, -2, -1, 1, 2, 3, 3, 3, 0, -3, -3, 0, 3, 2, -2, -4, -2, 2, 4, 3, 1, -1, -3, -4, -4, -3, -1, 1, 3, 4, 4, 4, 0, -4, -4, 0, 4, 3, 2, -2, -3, -5, -5, -3, -2, 2, 3, 5, 5, 4, 1
Offset: 0
- Hugo Pfoertner, Table of n, a(n) for n = 0..9060, covering range r <= 50.
- Hugo Pfoertner, Illustration of initial terms of A307014 and A307016.
- Hugo Pfoertner, Illustration of A307016 vs A307014, grid points.
- Hugo Pfoertner, Illustration of A307016 vs A307014, spiral.
- Hugo Pfoertner, Illustration of A307017 vs A307014, spiral.
- Hugo Pfoertner, PARI program for A307014 and A307016.
A307016
List coordinates (x,y) of the points in an hexagonal grid, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives the second coordinate in a barycentric coordinate system.
Original entry on oeis.org
0, 0, 1, 1, 0, -1, -1, 1, 2, 1, -1, -2, -1, 0, 2, 2, 0, -2, -2, 1, 2, 3, 3, 2, 1, -1, -2, -3, -3, -2, -1, 0, 3, 3, 0, -3, -3, 2, 4, 2, -2, -4, -2, 1, 3, 4, 4, 3, 1, -1, -3, -4, -4, -3, -1, 0, 4, 4, 0, -4, -4, 2, 3, 5, 5, 3, 2, -2, -3, -5, -5, -3, -2, 1
Offset: 0
Showing 1-5 of 5 results.
Comments