A367147
Index of matching grid point in the bijection between two infinite triangular grids with one grid rotated by Pi/6 around the common point (0,0), using an enumeration of the grid points by A307014 and A307016.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 12, 14, 15, 9, 17, 18, 29, 7, 8, 23, 10, 11, 30, 13, 20, 21, 22, 33, 24, 16, 26, 27, 28, 36, 42, 19, 38, 39, 25, 41, 31, 32, 57, 34, 35, 60, 54, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 72, 37, 63, 66, 40, 69, 55, 73, 74, 56, 76, 77, 58, 79, 80, 59
Offset: 0
n A307014(n) Bijection partner
| | A307016(n) in rotated grid
| | | rotated by Pi/6
| | | x y i j a(n) u v Distance([x,y],[u,v])
0 0 0 0.0 0.0 0 0 0 0.0 0.0 0.0
1 1 0 1.0 0.0 1 0 1 0.866 0.5 0.51764
2 0 1 0.5 0.866 0 1 2 0.0 1.0 0.51764
3 -1 1 -0.5 0.866 -1 1 3 -0.866 0.5 0.51764
4 -1 0 -1.0 0.0 -1 0 4 -0.866 -0.5 0.51764
5 0 -1 -0.5 -0.866 0 -1 5 0.0 -1.0 0.51764
6 1 -1 0.5 -0.866 1 -1 6 0.866 -0.5 0.51764
7 1 1 1.5 0.866 2 -1 12 1.732 0.0 0.89658
8 -1 2 0.0 1.732 0 2 14 0.0 2.0 0.26795
9 -2 1 -1.5 0.866 -2 2 15 -1.732 1.0 0.26795
10 -1 -1 -1.5 -0.866 -2 1 9 -1.732 0.0 0.89658
11 1 -2 0.0 -1.732 0 -2 17 0.0 -2.0 0.26795
12 2 -1 1.5 -0.866 2 -2 18 1.732 -1.0 0.26795
13 2 0 2.0 0.0 3 -2 29 2.598 -0.5 0.77955
14 0 2 1.0 1.732 1 1 7 0.866 1.5 0.26795
15 -2 2 -1.0 1.732 -1 2 8 -0.866 1.5 0.26795
A305575
List points (x,y) having integer coordinates, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives x-coordinates.
Original entry on oeis.org
0, 1, 0, -1, 0, 1, -1, -1, 1, 2, 0, -2, 0, 2, 1, -1, -2, -2, -1, 1, 2, 2, -2, -2, 2, 3, 0, -3, 0, 3, 1, -1, -3, -3, -1, 1, 3, 3, 2, -2, -3, -3, -2, 2, 3, 4, 0, -4, 0, 4, 1, -1, -4, -4, -1, 1, 4, 3, -3, -3, 3, 4, 2, -2, -4, -4, -2, 2, 4, 5, 4, 3, 0, -3, -4, -5, -4, -3, 0, 3, 4, 5, 1, -1
Offset: 0
The first points (listing [polar angle phi,x,y]) are:
r^2
0: [0.0*Pi,0,0];
1: [0.0*Pi,1,0], [0.5*Pi,0,1], [1.0*Pi,-1,0], [1.5*Pi,0,-1];
2: [0.25*Pi,1,1], [0.75*Pi,-1,1], [1.25*Pi,-1,-1], [1.75*Pi,1,-1];
4: [0.0*Pi,2,0], [0.5*Pi,0,2], [1.0*Pi,-2,0], [1.5*Pi,0,-2];
5: [0.148*Pi,2,1], [0.352*Pi,1,2], [0.648*Pi,-1,2], [0.852*Pi,-2,1],
[1.148*Pi,-2,-1], [1.352*Pi,-1,-2], [1.648*Pi,1,-2], [1.852*Pi,2,-1];
8: [0.25*Pi,2,2], [0.75*Pi,-2,2], [1.25*Pi,-2,-2], [1.75*Pi,2,-2].
-
atan2(y,x)=if(x>0,atan(y/x),if(x==0,if(y>0,Pi/2,-Pi/2),if(y>=0,atan(y/x)+Pi,atan(y/x)-Pi)));
angle(x,y)=(atan2(y,x)+2*Pi)%(2*Pi);
{a004018(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3)))};
xyselect=1; \\ change to 2 for A305576
print1(0,", ");for(s=1,25,my(r=a004018(s));if(r>0,my(v=matrix(r,3),w=vector(r),m=sqrtint(s),L=0);for(i=-m,m,my(k=s-i^2,kk);if(k==0,v[L++,1]=i;v[L,2]=0;v[L,3]=angle(i,0),if(issquare(k),kk=sqrtint(k);forstep(j=-kk,kk,kk+kk,v[L++,1]=i;v[L,2]=j;v[L,3]=angle(i,j)))));p=vecsort(v[,3],,1);for(k=1,L,w[k]=v[p[k],xyselect]);for(k=1,L,print1(w[k],", ")))); \\ Hugo Pfoertner, May 12 2019
A305576
List points (x,y) having integer coordinates, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives y-coordinates.
Original entry on oeis.org
0, 0, 1, 0, -1, 1, 1, -1, -1, 0, 2, 0, -2, 1, 2, 2, 1, -1, -2, -2, -1, 2, 2, -2, -2, 0, 3, 0, -3, 1, 3, 3, 1, -1, -3, -3, -1, 2, 3, 3, 2, -2, -3, -3, -2, 0, 4, 0, -4, 1, 4, 4, 1, -1, -4, -4, -1, 3, 3, -3, -3, 2, 4, 4, 2, -2, -4, -4, -2, 0, 3, 4, 5, 4, 3, 0, -3, -4, -5, -4, -3, 1
Offset: 0
A307011
First coordinate in a redundant hexagonal coordinate system of the points of a counterclockwise spiral on an hexagonal grid. Second and third coordinates are given in A307012 and A345978.
Original entry on oeis.org
0, 1, 0, -1, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -2, -1, 0, 1, 2, 3, 3, 3, 2, 1, 0, -1, -2, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 4, 4, 4, 4, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5
Offset: 0
- Hugo Pfoertner, Table of n, a(n) for n = 0..10034
- Margherita Barile, Oblique Coordinates, entry in Eric Weisstein's World of Mathematics.
- HandWiki, Hexagonal Lattice.
- Peter Munn, Illustration of signed distance of spiral points.
- Hugo Pfoertner, Illustration of A307012 vs A307011, spiral.
- Hugo Pfoertner, Illustration of A345978 vs A307011, spiral.
- Wikipedia, Signed distance function.
Positions on the spiral that correspond to Eisenstein primes:
A345435.
-
r=-1;d=-1;print1(m=0,", ");for(k=0,8,for(j=1,r,print1(s,", "));if(k%2,,m++;r++);for(j=-m,m+1,if(d*j>=-m,print1(s=d*j,", ")));d=-d)
A307016
List coordinates (x,y) of the points in an hexagonal grid, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives the second coordinate in a barycentric coordinate system.
Original entry on oeis.org
0, 0, 1, 1, 0, -1, -1, 1, 2, 1, -1, -2, -1, 0, 2, 2, 0, -2, -2, 1, 2, 3, 3, 2, 1, -1, -2, -3, -3, -2, -1, 0, 3, 3, 0, -3, -3, 2, 4, 2, -2, -4, -2, 1, 3, 4, 4, 3, 1, -1, -3, -4, -4, -3, -1, 0, 4, 4, 0, -4, -4, 2, 3, 5, 5, 3, 2, -2, -3, -5, -5, -3, -2, 1
Offset: 0
A307017
List coordinates (x,y) of the points in an hexagonal grid, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives the third coordinate in a barycentric coordinate system.
Original entry on oeis.org
0, 1, 1, 0, -1, -1, 0, 2, 1, -1, -2, -1, 1, 2, 2, 0, -2, -2, 0, 3, 3, 2, 1, -1, -2, -3, -3, -2, -1, 1, 2, 3, 3, 0, -3, -3, 0, 4, 2, -2, -4, -2, 2, 4, 4, 3, 1, -1, -3, -4, -4, -3, -1, 1, 3, 4, 4, 0, -4, -4, 0, 5, 5, 3, 2, -2, -3, -5, -5, -3, -2, 2, 3, 5, 5, 4, 1
Offset: 0
A367149
Length of cycles obtained by repeated application of the strip bijection for the triangular lattice (A367147), sorted by increasing minimum radius visited by any cycle of this length.
Original entry on oeis.org
1, 10, 12, 56, 110, 37, 278, 60, 398, 72, 36, 154, 1114, 370, 2336, 168, 614, 444, 516, 1786, 192, 660, 600, 1128, 84, 156, 120, 2952, 492, 1574, 961, 3456, 2100, 10790, 564, 2604, 12110, 10440, 1500, 3924, 4882, 25570, 1668, 16524, 1164, 12876, 9610, 9420, 22906, 7008, 10716
Offset: 1
See the linked file with list of points at minimum radius.
-
\\ Bijection function Q provided in A367147
cycle(v, upto=oo)= {my (n=1, w=Q(v)); while (w!=v, n++; if (n>upto,return(0)); w=Q(w)); n};
\\ upto can be used to ignore longer cycles
a367149(Points, upto=oo) =
{ my (L=LL=List());
for (n=1, #Points,
my (c=cycle(Points[n],upto));
if (c>0 && setsearch(LL,c)==0,
\\ deactivate print to mute diagnostic printout
print ([c, Points[n], sqrt(Points[n][1]^2 + Points[n][2]^2 + Points[n][1] *Points[n][2])]);
listput(L,c);
listput(LL,c); listsort(LL,1))
); L};
\\ Function a307014_16 provided in A307014
\\ Enumeration of grid points of triangular lattice by increasing radius
Plist = a307014_16(120,-46); \\ creates list of 52218 grid points
a367149(Plist) \\ all cycles having a point with R < 120 (a(1)-a(28)); takes 2 to 4 minutes
Showing 1-7 of 7 results.
Comments