cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307047 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1+x)^k-x^k).

Original entry on oeis.org

1, 1, 0, 1, -2, 0, 1, -3, 4, 0, 1, -4, 6, -8, 0, 1, -5, 10, -9, 16, 0, 1, -6, 15, -20, 9, -32, 0, 1, -7, 21, -35, 36, 0, 64, 0, 1, -8, 28, -56, 70, -64, -27, -128, 0, 1, -9, 36, -84, 126, -125, 120, 81, 256, 0, 1, -10, 45, -120, 210, -252, 200, -240, -162, -512, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2019

Keywords

Examples

			Square array begins:
   1,    1,    1,    1,    1,    1,     1,     1, ...
   0,   -2,   -3,   -4,   -5,   -6,    -7,    -8, ...
   0,    4,    6,   10,   15,   21,    28,    36, ...
   0,   -8,   -9,  -20,  -35,  -56,   -84,  -120, ...
   0,   16,    9,   36,   70,  126,   210,   330, ...
   0,  -32,    0,  -64, -125, -252,  -462,  -792, ...
   0,   64,  -27,  120,  200,  463,   924,  1716, ...
   0, -128,   81, -240, -275, -804, -1715, -3432, ...
   0,  256, -162,  496,  275, 1365,  2989,  6436, ...
		

Crossrefs

Columns 1-7 give A000007, A122803, A000748, (-1)^n * A000749(n+3), A000750, A006090, A049018.
Cf. A039912 (square array A(n,k), n >= 0, k >= 2), A306913, A306914, A306915.

Programs

  • Mathematica
    T[n_, k_] := (-1)^n * Sum[(-1)^(j * Mod[k, 2]) * Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = (-1)^n * Sum_{j=0..floor(n/k)} (-1)^((k mod 2) * j) * binomial(n+k-1,k*j+k-1).