cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307057 Expansion of 1/(2 - Product_{k>=2} 1/(1 - x^k)).

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 10, 15, 33, 55, 111, 195, 380, 684, 1306, 2389, 4507, 8313, 15591, 28881, 53991, 100257, 187086, 347860, 648512, 1206656, 2248399, 4185087, 7796011, 14514195, 27033073, 50334299, 93741325, 174552379, 325067573, 605316388, 1127249250, 2099115548, 3909023438, 7279285948
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2019

Keywords

Comments

Invert transform of A002865.

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(2 - 1/(&*[1 - x^j: j in [2..m+2]])) )); // G. C. Greubel, Jan 24 2024
    
  • Mathematica
    nmax = 50; CoefficientList[Series[1/(2 - Product[1/(1 - x^k), {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0]= 1; a[n_]:= a[n]= Sum[(PartitionsP[k] -PartitionsP[k-1]) a[n-k], {k,n}];
    Table[a[n], {n,0,50}]
    CoefficientList[Series[1/(2 -(1-x)/QPochhammer[x]), {x,0,80}], x] (* G. C. Greubel, Jan 24 2024 *)
  • SageMath
    m=80;
    def f(x): return 1/( 2 - (1-x)/product(1 - x^j for j in range(1,m+3)) )
    def A307057_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307057_list(m) # G. C. Greubel, Jan 24 2024

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A002865(k)*a(n-k).
a(n) ~ c / r^n, where r = 0.53700045638650021831634004949965496126950171484122... is the root of the equation 1 - r = 2*QPochhammer[r] and c = 0.2143395760756683581919851351414497181589685708674442097498294834747517926...
From G. C. Greubel, Jan 24 2024: (Start)
G.f.: 1/( 2 - (1-x)/QPochhammer(x) ).
G.f.: 1/( 2 - x^(1/24)*(1-x)/eta(x) ), where eta(x) is the Dedekind eta function. (End)