cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307064 Expansion of 1 - 1/Sum_{k>=0} k!!*x^k.

Original entry on oeis.org

0, 1, 1, 0, 3, 1, 18, 13, 155, 168, 1691, 2381, 22022, 37401, 331087, 649036, 5626103, 12372161, 106486594, 257573405, 2220690451, 5824952232, 50593271507, 142387607469, 1250521775454, 3745193283657, 33338037080183, 105558942751948, 953776675614223
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2019

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    F2:= func< n | n mod 2 eq 0 select Round(2^(n/2)*Gamma(n/2+1)) else Round( Gamma((n+3)/2)*Binomial(n+1, Floor((n+1)/2))/2^((n+1)/2) ) >;
    R:=PowerSeriesRing(Rationals(), m);
    [0] cat Coefficients(R!( 1 - 1/(&+[F2(j)*x^j : j in [0..m+2]]) )); // G. C. Greubel, Jan 24 2024
    
  • Mathematica
    nmax = 28; CoefficientList[Series[1 - 1/Sum[k!! x^k, {k, 0, nmax}], {x, 0, nmax}], x]
    a[0] = 0; a[n_]:= a[n] = n!! - Sum[k!! a[n-k], {k,n-1}];
    Table[a[n], {n, 0, 28}]
  • SageMath
    from sympy import factorial2
    m=80;
    def f(x): return 1 - 1/sum(factorial2(k)*x^k for k in range(m+1))
    def A307063_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307063_list(m) # G. C. Greubel, Jan 24 2024

Formula

a(0) = 0; a(n) = n!! - Sum_{k=1..n-1} k!!*a(n-k).