A307064 Expansion of 1 - 1/Sum_{k>=0} k!!*x^k.
0, 1, 1, 0, 3, 1, 18, 13, 155, 168, 1691, 2381, 22022, 37401, 331087, 649036, 5626103, 12372161, 106486594, 257573405, 2220690451, 5824952232, 50593271507, 142387607469, 1250521775454, 3745193283657, 33338037080183, 105558942751948, 953776675614223
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..800
Programs
-
Magma
m:=80; F2:= func< n | n mod 2 eq 0 select Round(2^(n/2)*Gamma(n/2+1)) else Round( Gamma((n+3)/2)*Binomial(n+1, Floor((n+1)/2))/2^((n+1)/2) ) >; R
:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( 1 - 1/(&+[F2(j)*x^j : j in [0..m+2]]) )); // G. C. Greubel, Jan 24 2024 -
Mathematica
nmax = 28; CoefficientList[Series[1 - 1/Sum[k!! x^k, {k, 0, nmax}], {x, 0, nmax}], x] a[0] = 0; a[n_]:= a[n] = n!! - Sum[k!! a[n-k], {k,n-1}]; Table[a[n], {n, 0, 28}]
-
SageMath
from sympy import factorial2 m=80; def f(x): return 1 - 1/sum(factorial2(k)*x^k for k in range(m+1)) def A307063_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(x) ).list() A307063_list(m) # G. C. Greubel, Jan 24 2024
Formula
a(0) = 0; a(n) = n!! - Sum_{k=1..n-1} k!!*a(n-k).