cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307067 Expansion of 1/(2 - Product_{k>=2} (1 + x^k)).

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 6, 12, 19, 36, 60, 108, 187, 328, 576, 1005, 1765, 3084, 5408, 9461, 16575, 29017, 50812, 88977, 155792, 272813, 477684, 836466, 1464654, 2564685, 4490833, 7863610, 13769463, 24110774, 42218847, 73926591, 129448088, 226667986, 396903536, 694991728
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2019

Keywords

Comments

Invert transform of A025147.

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(2 - (&*[1+x^j: j in [2..m+2]])) )); // G. C. Greubel, Jan 24 2024
    
  • Maple
    a:=series(1/(2-mul((1+x^k),k=2..100)),x=0,40): seq(coeff(a,x,n),n=0..39); # Paolo P. Lava, Apr 03 2019
  • Mathematica
    nmax = 39; CoefficientList[Series[1/(2 - Product[(1 + x^k), {k, 2, nmax}]), {x, 0, nmax}], x]
  • SageMath
    m=80;
    def f(x): return 1/( 2 - product(1+x^j for j in range(2, m+3)) )
    def A307067_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307067_list(m) # G. C. Greubel, Jan 24 2024

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A025147(k)*a(n-k).
From G. C. Greubel, Jan 24 2024: (Start)
G.f.: (1+x)/(2*(1+x) - QP(x^2)/QP(x)), where QP(x) = QPochhammer(x).
G.f.: (1+x)/(2*(1+x) - x^(1/24)*eta(x^2)/eta(x)), where eta(x) is the Dedekind eta function. (End)