cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307079 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k+x^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 0, 1, 1, 2, 3, 3, -4, 1, 1, 2, 3, 4, 0, -8, 1, 1, 2, 3, 4, 4, -9, -8, 1, 1, 2, 3, 4, 5, 0, -27, 0, 1, 1, 2, 3, 4, 5, 5, -14, -54, 16, 1, 1, 2, 3, 4, 5, 6, 0, -48, -81, 32, 1, 1, 2, 3, 4, 5, 6, 6, -20, -116, -81, 32, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2019

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,   1,   1, 1, 1, 1, ...
   1,  2,   2,    2,   2,   2, 2, 2, 2, ...
   1,  2,   3,    3,   3,   3, 3, 3, 3, ...
   1,  0,   3,    4,   4,   4, 4, 4, 4, ...
   1, -4,   0,    4,   5,   5, 5, 5, 5, ...
   1, -8,  -9,    0,   5,   6, 6, 6, 6, ...
   1, -8, -27,  -14,   0,   6, 7, 7, 7, ...
   1,  0, -54,  -48, -20,   0, 7, 8, 8, ...
   1, 16, -81, -116, -75, -27, 0, 8, 9, ...
		

Crossrefs

Columns 1-6 give A000012, A099087, A057682(n+1), A099587(n+1), A289321(n+1), A307089.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^j * Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j * binomial(n+1,k*j+1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} (-1)^j * binomial(i,k*j) * binomial(n-i,k*j).