A307080 a(n) = exp(1) * Sum_{k>=0} (-1)^k*(n*k + 1)^n/k!.
1, 0, -3, 19, 497, -1899, -489491, -15433676, 618450881, 120846851155, 7012261819901, -467816186167659, -175527285590430863, -20961845760818684812, 568194037748383908653, 898095630359015975379151, 220433074470274983356464897, 16144974747716546214909454181
Offset: 0
Keywords
Programs
-
Mathematica
Table[Exp[1] Sum[(-1)^k (n k + 1)^n/k!, {k, 0, Infinity}], {n, 0, 17}] Table[n! SeriesCoefficient[Exp[1 + x - Exp[n x]], {x, 0, n}], {n, 0, 17}] Join[{1}, Table[Sum[Binomial[n, k] n^k BellB[k, -1], {k, 0, n}], {n, 1, 17}]]
Formula
a(n) = n! * [x^n] exp(1 + x - exp(n*x)).
a(n) = Sum_{k=0..n} binomial(n,k) * n^k * A000587(k).