cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307066 a(n) = exp(-1) * Sum_{k>=0} (n*k + 1)^n/k!.

Original entry on oeis.org

1, 2, 13, 199, 5329, 216151, 12211597, 909102342, 85761187393, 9957171535975, 1390946372509101, 229587693339867567, 44117901231194922193, 9748599124579281064294, 2451233017637221706477037, 695088863051920283838281851, 220558203335628758134165860609
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 24 2019

Keywords

Crossrefs

Programs

  • Magma
    A307066:= func< n | (&+[Binomial(n,k)*n^k*Bell(k): k in [0..n]]) >;
    [A307066(n): n in [0..31]]; // G. C. Greubel, Jan 24 2024
    
  • Mathematica
    Table[Exp[-1] Sum[(n k + 1)^n/k!, {k, 0, Infinity}], {n, 0, 16}]
    Table[n! SeriesCoefficient[Exp[Exp[n x] + x - 1], {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[Sum[Binomial[n, k] n^k BellB[k], {k, 0, n}], {n, 1, 16}]]
  • SageMath
    def A307066(n): return sum(binomial(n,k)*n^k*bell_number(k) for k in range(n+1))
    [A307066(n) for n in range(31)] # G. C. Greubel, Jan 24 2024

Formula

a(n) = n! * [x^n] exp(exp(n*x) + x - 1).
a(n) = Sum_{k=0..n} binomial(n,k) * n^k * Bell(k).

A367784 a(n) = exp(1) * Sum_{k>=0} (-1)^k * (n*k - 1)^n / k!.

Original entry on oeis.org

1, -2, 5, 17, 17, -8151, -311435, -777974, 927723585, 82906687673, 1693962380101, -707005824990631, -137258747025993071, -10253960705018807830, 1697644859939460151413, 803696888217607331079149, 148126297324647875348070657, -323461353221296480463456191
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[1 - x - Exp[n x]], {x, 0, n}], {n, 0, 17}]
    Unprotect[Power]; 0^0 = 1; Table[Sum[(-1)^(n - k) Binomial[n, k] n^k BellB[k, -1], {k, 0, n}], {n, 0, 17}]

Formula

a(n) = n! * [x^n] exp(1 - x - exp(n*x)).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * n^k * A000587(k).
Showing 1-2 of 2 results.