cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324426 a(n) = Product_{i=1..n, j=1..n} (i^3 + j^3).

Original entry on oeis.org

1, 2, 2592, 134425267200, 3120795915109442519040000, 180825857777547616919759624941086965760000000, 99356698720512072045648926659510730227553351200000695922065408000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^3+j^3, i=1..n), j=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[i^3+j^3, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
  • PARI
    a(n) = prod(i=1, n, prod(j=1, n, i^3+j^3)); \\ Michel Marcus, Feb 27 2019
    
  • Python
    from math import prod, factorial
    def A324426(n): return prod(i**3+j**3 for i in range(1,n) for j in range(i+1,n+1))**2*factorial(n)**3<Chai Wah Wu, Nov 26 2023

Formula

a(n) ~ A * 2^(2*n*(n+1) + 1/4) * exp(Pi*(n*(n+1) + 1/6)/sqrt(3) - 9*n^2/2 - 1/12) * n^(3*n^2 - 3/4) / (3^(5/6) * Pi^(1/6) * Gamma(2/3)^2), where A is the Glaisher-Kinkelin constant A074962.
a(n) = A079478(n) * A367543(n). - Vaclav Kotesovec, Nov 22 2023
For n>0, a(n)/a(n-1) = A272246(n)^2 / (2*n^9). - Vaclav Kotesovec, Dec 02 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A307209 Decimal expansion of Product_{i>=1, j>=1} (1 + 1/(i^3 + j^3)).

Original entry on oeis.org

3, 5, 0, 4, 7, 8, 2, 9, 9, 9, 3, 3, 9, 7, 2, 8, 3, 7, 5, 8, 9, 1, 1, 2, 0, 5, 7, 0, 4, 3, 8, 0, 6, 1, 2, 5, 5, 8, 3, 8, 9, 3, 2, 4, 7, 8, 6, 2, 7, 1, 2, 7, 5, 3, 5, 4, 1, 9, 9, 4, 6, 2, 6, 6, 1, 4, 0, 5, 8, 3, 8, 5, 0, 3, 5, 0, 3, 4, 7, 5, 6, 3, 5, 2, 7, 4, 7, 5, 0, 9, 5, 0, 5, 1, 3, 7, 8, 9, 1, 7, 8, 4, 5, 9, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 28 2019

Keywords

Comments

Product_{i>=1, j>=1} (1 + 1/(i^2 + j^2)) is divergent.
A324443(n) / A324403(n) ~ c * n^(Pi/2), where c = A306398 * 2^(3/4) * exp(-Pi/12) * Pi^(1/4) * Gamma(3/4) = 0.36753062884677326134620846786416595535234038999313...
Product_{i=1..n, j=1..n} (1 + 1/(i + j)) = A324444(n) / A079478(n) ~ 2^(2*n + 1) / (sqrt(Pi)*n^(3/2)).

Examples

			3.50478299933972837589112057043806125583893247862712753541994626614058385...
		

Crossrefs

Programs

  • Mathematica
    (* The iteration cycle: *) $MaxExtraPrecision = 1000; funs[n_] := Product[1 + 1/(i^3 + j^3), {i, 1, n}, {j, 1, n}]; Do[Print[N[Sum[(-1)^(m + j)*funs[j*Floor[200/m]] * j^(m - 1)/(j - 1)!/(m - j)!, {j, 1, m}], 100]], {m, 10, 100, 10}]
  • PARI
    default(realprecision, 50); exp(sumalt(k=1, -(-1)^k/k*sumnum(i=1, sumnum(j=1, 1/(i^3+j^3)^k)))) \\ 15 decimals correct

Formula

Equals limit_{n->infinity} A307210(n) / A324426(n).
Showing 1-2 of 2 results.