cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A334411 Decimal expansion of Product_{k>=1} (1 + 1/k^8).

Original entry on oeis.org

2, 0, 0, 8, 1, 5, 6, 0, 5, 4, 9, 9, 2, 7, 4, 5, 3, 1, 5, 1, 4, 9, 0, 3, 9, 4, 8, 2, 3, 2, 3, 4, 1, 3, 6, 9, 2, 1, 1, 9, 5, 3, 2, 1, 5, 9, 8, 3, 0, 9, 5, 0, 9, 7, 8, 7, 7, 0, 7, 4, 2, 9, 9, 6, 1, 7, 4, 2, 2, 7, 2, 5, 1, 1, 3, 8, 0, 5, 5, 2, 0, 9, 3, 4, 0, 6, 0, 5, 0, 1, 0, 2, 0, 2, 6, 9, 6, 3, 0, 3, 2, 1, 8, 7, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 27 2020

Keywords

Comments

From Vaclav Kotesovec, Aug 30 2024: (Start)
For m>0, Product_{k>=1} (1 + m/k^8) = (cosh(Pi*sqrt(2 - sqrt(2))*m^(1/8)) - cos(Pi*sqrt(2 + sqrt(2))*m^(1/8))) * (cosh(Pi*sqrt(2 + sqrt(2))*m^(1/8)) - cos(Pi*sqrt(2 - sqrt(2))*m^(1/8)))/(4*sqrt(m)*Pi^4).
If m tends to infinity, Product_{k>=1} (1 + m/k^8) ~ exp(Pi*sqrt(2*(2 + sqrt(2)))*m^(1/8)) / (16*Pi^4*sqrt(m)).
In general, if m tends to infinity and v > 2, Product_{k>=1} (1 + m/k^v) ~ exp(Pi*m^(1/v)/sin(Pi/v)) / ((2*Pi)^(v/2)*sqrt(m)). (End)

Examples

			2.00815605499274531514903948232341369211953215983095097877074299617422...
		

Crossrefs

Programs

  • Maple
    evalf(Product(1 + 1/j^8, j = 1..infinity), 120);
  • Mathematica
    RealDigits[Chop[N[Product[(1 + 1/n^8), {n, 1, Infinity}], 120]]][[1]]
  • PARI
    default(realprecision, 120); exp(sumalt(j=1, -(-1)^j*zeta(8*j)/j))

Formula

Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(8*j)/j)).
Equals (cos(sqrt(4 - 2*sqrt(2))*Pi) + cos(sqrt(4 + 2*sqrt(2))*Pi) + cosh(sqrt(4 - 2*sqrt(2))*Pi) + cosh(sqrt(4 + 2*sqrt(2))*Pi) - 2*cos(sqrt(2 - sqrt(2))*Pi) * cosh(sqrt(2 - sqrt(2))*Pi) - 2*cos(sqrt(2 + sqrt(2))*Pi) * cosh(sqrt(2 + sqrt(2))*Pi)) / (8*Pi^4).

A375842 a(n) = Product_{k=0..n} (k^5 + n).

Original entry on oeis.org

0, 2, 204, 103320, 182819520, 886613565600, 9973411835945040, 230723130088707984000, 10026790739932043582668800, 762878670971305314645055065600, 96049580303627434572710125880376000, 19110279123993980912852049573590159155200
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^5 + n, {k, 0, n}], {n, 0, 15}]

Formula

a(n) ~ n^(5*n + 3) / exp(5*n - Pi * sqrt(2*(1+sqrt(5))) * n^(1/5) / 5^(1/4)).
Showing 1-2 of 2 results.