cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A156648 Decimal expansion of Product_{k>=1} (1 + 1/k^2).

Original entry on oeis.org

3, 6, 7, 6, 0, 7, 7, 9, 1, 0, 3, 7, 4, 9, 7, 7, 7, 2, 0, 6, 9, 5, 6, 9, 7, 4, 9, 2, 0, 2, 8, 2, 6, 0, 6, 6, 6, 5, 0, 7, 1, 5, 6, 3, 4, 6, 8, 2, 7, 6, 3, 0, 2, 7, 7, 4, 7, 8, 0, 0, 3, 5, 9, 3, 5, 5, 7, 4, 4, 7, 3, 2, 4, 1, 1, 1, 0, 2, 2, 0, 7, 3, 2, 1, 3, 2, 5, 5, 9, 2, 6, 5, 9, 0, 3, 2, 3, 0, 2, 3, 5, 2, 8, 7, 5
Offset: 1

Views

Author

R. J. Mathar, Feb 12 2009

Keywords

Comments

Consider the value at s = 2 of the partition zeta functions zeta_{type}(s), where the defining sum runs over partitions into 'type' parts, where 'type' is 'even', 'prime' or 'distinct'. (For the precise definitions see R. Schneider's dissertation.) Then
zeta_{even}(2) = Pi/2 = A019669;
zeta_{prime}(2) = Pi^2/6 = A013661;
zeta_{distinct}(2) = sinh(Pi)/Pi, this constant. - Peter Luschny, Aug 11 2021
For m>0, Product_{k>=1} (1 + m/k^2) = sinh(Pi*sqrt(m)) / (Pi*sqrt(m)). - Vaclav Kotesovec, Aug 30 2024

Examples

			3.676077910374977720695697492028260666507156346827630277478003593557447324111... = (1+1)*(1+1/4)*(1+1/9)*(1+1/16)*(1+1/25)*...
		

References

  • Reinhold Remmert, Classical topics in complex function theory, Vol. 172 of Graduate Texts in Mathematics, p. 12, Springer, 1997.

Crossrefs

Programs

Formula

Equals sinh(Pi)/Pi.
Equals 1/A090986. - R. J. Mathar, Mar 05 2009
Binomial(2, 1+i) = 1/(i!*(-i)!) (where x! means Gamma(x+1)). - Robert G. Wilson v, Feb 23 2015
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(2*j)/j)). - Vaclav Kotesovec, Mar 28 2019
Equals Product_{k>=1} (1+2/(k*(k+2))). - Amiram Eldar, Aug 16 2020

A073017 Decimal expansion of the Product_{n>=1} (1 + 1/n^3).

Original entry on oeis.org

2, 4, 2, 8, 1, 8, 9, 7, 9, 2, 0, 9, 8, 8, 7, 0, 3, 2, 8, 7, 3, 6, 0, 4, 1, 4, 3, 6, 1, 7, 9, 1, 4, 6, 3, 5, 8, 1, 1, 8, 3, 6, 2, 9, 4, 4, 7, 8, 3, 3, 9, 0, 4, 9, 7, 6, 3, 2, 7, 4, 9, 9, 7, 4, 7, 2, 6, 4, 4, 4, 7, 3, 4, 1, 2, 0, 8, 6, 8, 3, 6, 8, 1, 2, 3, 8, 0, 5, 5, 0, 1, 5, 7, 2, 0, 5, 9, 0, 4, 3, 8, 8, 1, 3, 8
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Let X_1, X_2, ... be a sequence of independent Bernoulli trials with probability of success 1/n^3. Let Y be the position of the last success in the sequence. 1.428189... is the expected value of Y. - Geoffrey Critzer, Aug 19 2019
If m tends to infinity, Product_{k>=1} (1 + m/k^3) ~ exp(2*Pi*m^(1/3)/sqrt(3)) / (2^(3/2)*Pi^(3/2)*sqrt(m)). - Vaclav Kotesovec, Aug 30 2024

Examples

			2.42818979209887032873604143617914635811836294478339049763...
		

Crossrefs

Programs

Formula

Equals cosh(1/2 * sqrt(3) * Pi)/Pi.
Equals exp(Sum_{j>=1} (-(-1)^j*zeta(3*j)/j)). - Vaclav Kotesovec, Mar 28 2019
Equals Product_{n>=1} (1 + 1/(n^2 + n)). - Amiram Eldar, Sep 01 2020
Equals 3*Product_{n >= 2} (1-n^(-3)) = 3*A109219. - Robert FERREOL, Oct 06 2021

A258870 Decimal expansion of Product_{n>=1} (1+1/n^4).

Original entry on oeis.org

2, 1, 6, 7, 3, 6, 0, 6, 2, 5, 8, 8, 2, 2, 6, 1, 9, 5, 1, 9, 0, 0, 2, 3, 1, 3, 6, 6, 8, 4, 7, 0, 2, 7, 4, 4, 1, 8, 2, 1, 6, 1, 3, 1, 7, 2, 9, 6, 3, 4, 9, 8, 5, 0, 9, 7, 5, 6, 2, 3, 2, 5, 9, 9, 8, 8, 2, 2, 1, 3, 7, 8, 7, 1, 9, 4, 8, 5, 3, 8, 1, 6, 7, 7, 0, 4, 2, 6, 8, 1, 2, 3, 6, 4, 1, 5, 4, 4, 4, 7, 3, 7, 9, 5, 0, 3, 6, 4, 6, 4, 3, 4, 5, 8, 1, 4, 2, 9, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2015

Keywords

Comments

For m>0, Product_{k>=1} (1 + m/k^4) = (cosh(sqrt(2)*Pi*m^(1/4)) - cos(sqrt(2)*Pi*m^(1/4))) / (2*Pi^2*sqrt(m)). - Vaclav Kotesovec, Aug 30 2024

Examples

			2.16736062588226195190023136684702744182161317296349850975623259988...
		

Crossrefs

Programs

  • Maple
    evalf((cosh(sqrt(2)*Pi)-cos(sqrt(2)*Pi))/(2*Pi^2),120);
  • Mathematica
    RealDigits[(Cosh[Sqrt[2]*Pi]-Cos[Sqrt[2]*Pi])/(2*Pi^2),10,120][[1]]
  • PARI
    exp(sumalt(j=1, -(-1)^j*zeta(4*j)/j)) \\ Vaclav Kotesovec, Dec 15 2020

Formula

Equals (cosh(sqrt(2)*Pi)-cos(sqrt(2)*Pi))/(2*Pi^2).
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(4*j)/j)). - Vaclav Kotesovec, Mar 28 2019

A175619 Decimal expansion of Product_{n>=2} (1-n^(-8)).

Original entry on oeis.org

9, 9, 5, 9, 2, 3, 3, 1, 5, 0, 7, 7, 7, 8, 3, 6, 7, 1, 2, 0, 4, 1, 0, 6, 7, 4, 7, 3, 0, 8, 6, 0, 6, 6, 6, 7, 0, 6, 6, 2, 3, 0, 0, 1, 7, 2, 9, 6, 3, 3, 6, 3, 7, 2, 3, 9, 9, 8, 3, 3, 6, 3, 3, 0, 0, 2, 6, 0, 0, 0, 3, 1, 6, 8, 3, 0, 3, 1, 1, 9, 4, 0, 8, 9, 6, 9, 0, 7, 2, 9, 7, 6, 1, 2, 9, 0, 8, 5, 3, 2, 6, 4, 4, 0, 7
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2010

Keywords

Examples

			0.9959233150... = (255/256)*(6560/6561)*(65535/65536)*...
		

Crossrefs

Programs

  • Maple
    t := Pi/sqrt(2) ; sinh(Pi)*((sin(t)*cosh(t))^2+(cos(t)*sinh(t))^2)/8/Pi^3 ; evalf(%) ;
  • Mathematica
    RealDigits[ -Sin[(-1)^(1/4)*Pi]*Sin[(-1)^(3/4)*Pi]*Sinh[Pi] / (8*Pi^3) // Re, 10, 105] // First(* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    exp(suminf(j=1, (1 - zeta(8*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020
    
  • PARI
    prodnumrat(1-x^-8, 2) \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)) * sinh(Pi) / (16*Pi^3). - Vaclav Kotesovec, Apr 27 2020
Equals exp(Sum_{j>=1} (1 - zeta(8*j))/j). - Vaclav Kotesovec, Apr 27 2020

A258871 Decimal expansion of Product_{n>=1} (1+1/n^6).

Original entry on oeis.org

2, 0, 3, 4, 7, 4, 0, 8, 3, 5, 0, 0, 9, 4, 2, 9, 0, 6, 3, 5, 8, 6, 8, 2, 0, 8, 0, 9, 6, 4, 2, 8, 5, 0, 8, 9, 7, 7, 1, 0, 9, 0, 1, 0, 0, 6, 2, 3, 9, 2, 5, 4, 6, 9, 0, 5, 5, 7, 5, 3, 9, 4, 8, 0, 4, 5, 2, 9, 8, 4, 1, 2, 0, 1, 9, 1, 5, 2, 5, 8, 4, 9, 1, 3, 5, 3, 5, 9, 8, 1, 5, 4, 9, 6, 6, 7, 0, 7, 6, 8, 6, 7, 8, 1, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2015

Keywords

Comments

From Vaclav Kotesovec, Aug 30 2024: (Start)
For m>0, Product_{k>=1} (1 + m/k^6) = (cosh(Pi*m^(1/6)) - cos(sqrt(3)*Pi*m^(1/6))) * sinh(Pi*m^(1/6)) / (2*Pi^3*sqrt(m)).
If m tends to infinity, Product_{k>=1} (1 + m/k^6) ~ exp(2*Pi*m^(1/6)) / (8*Pi^3*sqrt(m)). (End)

Examples

			2.03474083500942906358682080964285089771090100623925469055753948...
		

Crossrefs

Programs

  • Maple
    evalf((cosh(Pi)-cos(sqrt(3)*Pi))*sinh(Pi)/(2*Pi^3), 120);
  • Mathematica
    RealDigits[(Cosh[Pi]-Cos[Sqrt[3]*Pi])*Sinh[Pi]/(2*Pi^3),10,120][[1]]
  • PARI
    prodnumrat(1+x^-6, 1) \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals (cosh(Pi)-cos(sqrt(3)*Pi))*sinh(Pi)/(2*Pi^3).
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(6*j)/j)). - Vaclav Kotesovec, Mar 28 2019

A375845 a(n) = Product_{k=0..n} (k^8 + n).

Original entry on oeis.org

0, 2, 1548, 20400912, 2237404520000, 1316258829530177400, 3107531556500789042401392, 23981023412887138890925360910336, 519343443733819692494314622381817102336, 28055691989665530513724742545624840551562500000
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2024

Keywords

Comments

In general, for m > 2, Product_{k=0..n} (k^m + n) ~ n^(m*n + (m+1)/2) / exp(m*n - Pi * n^(1/m) / sin(Pi/m)).

Crossrefs

Cf. A334411.
Cf. A126804 (m=1), A375839 (m=2), A375840 (m=3), A375841 (m=4), A375842 (m=5), A375843 (m=6), A375844 (m=7).

Programs

  • Mathematica
    Table[Product[k^8 + n, {k, 0, n}], {n, 0, 15}]

Formula

a(n) ~ n^(8*n + 9/2) / exp(8*n - Pi*sqrt(2*(2+sqrt(2)))*n^(1/8)).

A144667 Decimal expansion of product_{n=2..infinity} (n^8-1)/(n^8+1).

Original entry on oeis.org

9, 9, 1, 8, 7, 8, 4, 0, 7, 6, 5, 8, 2, 9, 4, 8, 1, 6, 9, 6, 6, 4, 2, 6, 9, 2, 7, 7, 8, 4, 8, 8, 9, 3, 4, 0, 4, 8, 0, 4, 0, 6, 2, 9, 2, 0, 6, 6, 3, 5, 4, 2, 2, 8, 7, 4, 5, 0, 5, 8, 3, 0, 7, 6, 1, 9, 5, 8, 1, 8, 4, 1, 2, 5, 0, 3, 9, 1, 6, 8, 5, 9, 7, 3, 1, 0, 8, 1, 8, 9, 9, 1, 6, 2, 5, 0, 8, 8, 3, 6, 7, 0, 7, 2, 8
Offset: 0

Views

Author

R. J. Mathar, Feb 01 2009

Keywords

Examples

			0.9918784076582948169664...
		

Crossrefs

Cf. A090986.

Programs

  • Mathematica
    RealDigits[-1/4*Pi*Csc[(-1)^(1/8)*Pi]*Csc[(-1)^(3/8)*Pi]*Csc[(-1)^(5/8)*Pi] * Csc[(-1)^(7/8)*Pi]*Sin[(-1)^(1/4)*Pi]*Sin[(-1)^(3/4)*Pi]*Sinh[Pi] // Re, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)

Formula

Equals 2*A175619/A334411. - Vaclav Kotesovec, Apr 27 2020

Extensions

More terms from Jean-François Alcover, Feb 11 2013
Showing 1-7 of 7 results.