cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A045778 Number of factorizations of n into distinct factors greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 5, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2, 5, 1, 9, 2, 3, 2, 2, 2, 10, 1, 3, 3, 5, 1, 5, 1, 5
Offset: 1

Views

Author

Keywords

Comments

This sequence depends only on the prime signature of n and not on the actual value of n.
Also the number of strict multiset partitions (sets of multisets) of the prime factors of n. - Gus Wiseman, Dec 03 2016
Number of sets of integers greater than 1 whose product is n. - Antti Karttunen, Feb 20 2024

Examples

			24 can be factored as 24, 2*12, 3*8, 4*6, or 2*3*4, so a(24) = 5. The factorization 2*2*6 is not permitted because the factor 2 is present twice. a(1) = 1 represents the empty factorization.
		

Crossrefs

Cf. A036469, A114591, A114592, A316441 (Dirichlet inverse).
Cf. A156648 (2*Dgf at s=2), A073017 (2*Dgf at s=3), A258870 (2*Dgf at s=4).
Cf. also A069626 (Number of sets of integers > 1 whose least common multiple is n).
Cf. A287549 (partial sums).

Programs

  • APL
    ⍝ Dyalog dialect
    divisors ← {ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð, (⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð}
    A045778 ← { D←1↓divisors(⍵) ⋄ T←(⍴D)⍴2 ⋄ +/⍵⍷{×/D/⍨T⊤⍵}¨(-∘1)⍳2*⍴D } ⍝ (simple, but a memory hog)
    A045778 ← { ⍺←⌽divisors(⍵) ⋄ 1=⍵:1 ⋄ 0=≢⍺:0 ⋄ R←⍺↓⍨⍺⍳⍵∘÷ ⋄ Ð←{⍺/⍨0=⍺|⍵} ⋄ +/(((R)Ð⊢)∇⊢)¨(⍵∘÷)¨⍺ } ⍝ (more efficient) - Antti Karttunen, Feb 20 2024
  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..120);  # Alois P. Heinz, May 26 2013
  • Mathematica
    gd[m_, 1] := 1; gd[1, n_] := 0; gd[1, 1] := 1; gd[0, n_] := 0; gd[m_, n_] := gd[m, n] = Total[gd[# - 1, n/#] & /@ Select[Divisors[n], # <= m &]]; Array[ gd[#, #] &, 100]  (* Alexander Adam, Dec 28 2012 *)
  • PARI
    v=vector(100,k,k==1); for(n=2,#v, v+=dirmul(v,vector(#v,k,k==n)) ); v /* Max Alekseyev, Jul 16 2014 */
    
  • PARI
    A045778(n, k=n) = ((n<=k) + sumdiv(n, d, if(d > 1 && d <= k && d < n, A045778(n/d, d-1)))); \\ After Alois P. Heinz's Maple-code by Antti Karttunen, Jul 23 2017, edited Feb 20 2024
    
  • PARI
    A045778(n, m=n) = if(1==n, 1, sumdiv(n,d,if((d>1)&&(d<=m),A045778(n/d,d-1)))); \\ Antti Karttunen, Feb 20 2024
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import divisors, isprime
    @cacheit
    def b(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum(0 if d>k else b(n//d, d - 1) for d in divisors(n)[1:-1]))
    def a(n): return b(n, n)
    print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Aug 19 2017, after Maple code
    

Formula

Dirichlet g.f.: Product_{n>=2} (1 + 1/n^s).
Let p and q be two distinct prime numbers and k a natural number. Then a(p^k) = A000009(k) and a(p^k*q) = A036469(k). - Alexander Adam, Dec 28 2012
Let p_i with 1<=i<=k k distinct prime numbers. Then a(Product_{i=1..k} p_i) = A000110(k). - Alexander Adam, Dec 28 2012

Extensions

Edited by Franklin T. Adams-Watters, Jun 04 2009

A156648 Decimal expansion of Product_{k>=1} (1 + 1/k^2).

Original entry on oeis.org

3, 6, 7, 6, 0, 7, 7, 9, 1, 0, 3, 7, 4, 9, 7, 7, 7, 2, 0, 6, 9, 5, 6, 9, 7, 4, 9, 2, 0, 2, 8, 2, 6, 0, 6, 6, 6, 5, 0, 7, 1, 5, 6, 3, 4, 6, 8, 2, 7, 6, 3, 0, 2, 7, 7, 4, 7, 8, 0, 0, 3, 5, 9, 3, 5, 5, 7, 4, 4, 7, 3, 2, 4, 1, 1, 1, 0, 2, 2, 0, 7, 3, 2, 1, 3, 2, 5, 5, 9, 2, 6, 5, 9, 0, 3, 2, 3, 0, 2, 3, 5, 2, 8, 7, 5
Offset: 1

Views

Author

R. J. Mathar, Feb 12 2009

Keywords

Comments

Consider the value at s = 2 of the partition zeta functions zeta_{type}(s), where the defining sum runs over partitions into 'type' parts, where 'type' is 'even', 'prime' or 'distinct'. (For the precise definitions see R. Schneider's dissertation.) Then
zeta_{even}(2) = Pi/2 = A019669;
zeta_{prime}(2) = Pi^2/6 = A013661;
zeta_{distinct}(2) = sinh(Pi)/Pi, this constant. - Peter Luschny, Aug 11 2021
For m>0, Product_{k>=1} (1 + m/k^2) = sinh(Pi*sqrt(m)) / (Pi*sqrt(m)). - Vaclav Kotesovec, Aug 30 2024

Examples

			3.676077910374977720695697492028260666507156346827630277478003593557447324111... = (1+1)*(1+1/4)*(1+1/9)*(1+1/16)*(1+1/25)*...
		

References

  • Reinhold Remmert, Classical topics in complex function theory, Vol. 172 of Graduate Texts in Mathematics, p. 12, Springer, 1997.

Crossrefs

Programs

Formula

Equals sinh(Pi)/Pi.
Equals 1/A090986. - R. J. Mathar, Mar 05 2009
Binomial(2, 1+i) = 1/(i!*(-i)!) (where x! means Gamma(x+1)). - Robert G. Wilson v, Feb 23 2015
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(2*j)/j)). - Vaclav Kotesovec, Mar 28 2019
Equals Product_{k>=1} (1+2/(k*(k+2))). - Amiram Eldar, Aug 16 2020

A109219 Decimal expansion of Product_{n >= 2} 1-n^(-3).

Original entry on oeis.org

8, 0, 9, 3, 9, 6, 5, 9, 7, 3, 6, 6, 2, 9, 0, 1, 0, 9, 5, 7, 8, 6, 8, 0, 4, 7, 8, 7, 2, 6, 3, 8, 2, 1, 1, 9, 3, 7, 2, 7, 8, 7, 6, 4, 8, 2, 6, 1, 1, 3, 0, 1, 6, 5, 8, 7, 7, 5, 8, 3, 3, 2, 4, 9, 0, 8, 8, 1, 4, 9, 1, 1, 3, 7, 3, 6, 2, 2, 7, 8, 9, 3, 7, 4, 6, 0, 1, 8, 3, 3, 8, 5, 7, 3, 5, 3, 0, 1, 4, 6, 2, 7, 1, 2, 6
Offset: 0

Views

Author

Zak Seidov, Apr 17 2006

Keywords

Comments

The physical applications of this kind of product (with s<0) can be found in the Klauder et al. reference. - Karol A. Penson, Feb 24 2006

Examples

			0.809396597366290109578680478726382119372787648261130...
		

Crossrefs

Programs

Formula

Equals cosh((sqrt(3)*Pi)/2)/(3*Pi).
Product_{n >= 2} (1 - 1/n^p) simplifies, if p is odd, to 1/(p * Product_{j=1..p-1} Gamma(-(-1)^(j*(1 + 1/p)))) and, if p is even, to the elementary (Product_{j=1..p/2-1} sin(Pi*(-1)^(2*j/p))/(Pi*i)) / p. - David W. Cantrell, Feb 24 2006
Equals exp(Sum_{j>=1} (1 - zeta(3*j))/j). - Vaclav Kotesovec, Apr 27 2020
Equals 1/(Gamma((5-i*sqrt(3))/2)*Gamma((5+i*sqrt(3))/2)). - Amiram Eldar, Sep 01 2020

Extensions

Corrected and extended by T. D. Noe, Apr 24 2006

A255434 Product_{k=0..n} (k^4+1).

Original entry on oeis.org

1, 2, 34, 2788, 716516, 448539016, 581755103752, 1397375759212304, 5725048485492809488, 37567768161803815860256, 375715249386199962418420256, 5501222681512739849730509388352, 114078854746529686263861573186255424, 3258320249270380899068414253345827420288
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 23 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^4 + 1, {k, 0, n}], {n, 0, 15}]
    FoldList[Times,Range[0,15]^4+1] (* Harvey P. Dale, Nov 01 2022 *)
  • PARI
    a(n) = prod(k=1, n, 1+k^4); \\ Michel Marcus, Jan 25 2016

Formula

a(n) ~ 2 * (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)) * n^(4*n+2) / exp(4*n).
a(n) ~ A258870 * (n!)^4. - Vaclav Kotesovec, May 16 2022

A073017 Decimal expansion of the Product_{n>=1} (1 + 1/n^3).

Original entry on oeis.org

2, 4, 2, 8, 1, 8, 9, 7, 9, 2, 0, 9, 8, 8, 7, 0, 3, 2, 8, 7, 3, 6, 0, 4, 1, 4, 3, 6, 1, 7, 9, 1, 4, 6, 3, 5, 8, 1, 1, 8, 3, 6, 2, 9, 4, 4, 7, 8, 3, 3, 9, 0, 4, 9, 7, 6, 3, 2, 7, 4, 9, 9, 7, 4, 7, 2, 6, 4, 4, 4, 7, 3, 4, 1, 2, 0, 8, 6, 8, 3, 6, 8, 1, 2, 3, 8, 0, 5, 5, 0, 1, 5, 7, 2, 0, 5, 9, 0, 4, 3, 8, 8, 1, 3, 8
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Let X_1, X_2, ... be a sequence of independent Bernoulli trials with probability of success 1/n^3. Let Y be the position of the last success in the sequence. 1.428189... is the expected value of Y. - Geoffrey Critzer, Aug 19 2019
If m tends to infinity, Product_{k>=1} (1 + m/k^3) ~ exp(2*Pi*m^(1/3)/sqrt(3)) / (2^(3/2)*Pi^(3/2)*sqrt(m)). - Vaclav Kotesovec, Aug 30 2024

Examples

			2.42818979209887032873604143617914635811836294478339049763...
		

Crossrefs

Programs

Formula

Equals cosh(1/2 * sqrt(3) * Pi)/Pi.
Equals exp(Sum_{j>=1} (-(-1)^j*zeta(3*j)/j)). - Vaclav Kotesovec, Mar 28 2019
Equals Product_{n>=1} (1 + 1/(n^2 + n)). - Amiram Eldar, Sep 01 2020
Equals 3*Product_{n >= 2} (1-n^(-3)) = 3*A109219. - Robert FERREOL, Oct 06 2021

A258871 Decimal expansion of Product_{n>=1} (1+1/n^6).

Original entry on oeis.org

2, 0, 3, 4, 7, 4, 0, 8, 3, 5, 0, 0, 9, 4, 2, 9, 0, 6, 3, 5, 8, 6, 8, 2, 0, 8, 0, 9, 6, 4, 2, 8, 5, 0, 8, 9, 7, 7, 1, 0, 9, 0, 1, 0, 0, 6, 2, 3, 9, 2, 5, 4, 6, 9, 0, 5, 5, 7, 5, 3, 9, 4, 8, 0, 4, 5, 2, 9, 8, 4, 1, 2, 0, 1, 9, 1, 5, 2, 5, 8, 4, 9, 1, 3, 5, 3, 5, 9, 8, 1, 5, 4, 9, 6, 6, 7, 0, 7, 6, 8, 6, 7, 8, 1, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2015

Keywords

Comments

From Vaclav Kotesovec, Aug 30 2024: (Start)
For m>0, Product_{k>=1} (1 + m/k^6) = (cosh(Pi*m^(1/6)) - cos(sqrt(3)*Pi*m^(1/6))) * sinh(Pi*m^(1/6)) / (2*Pi^3*sqrt(m)).
If m tends to infinity, Product_{k>=1} (1 + m/k^6) ~ exp(2*Pi*m^(1/6)) / (8*Pi^3*sqrt(m)). (End)

Examples

			2.03474083500942906358682080964285089771090100623925469055753948...
		

Crossrefs

Programs

  • Maple
    evalf((cosh(Pi)-cos(sqrt(3)*Pi))*sinh(Pi)/(2*Pi^3), 120);
  • Mathematica
    RealDigits[(Cosh[Pi]-Cos[Sqrt[3]*Pi])*Sinh[Pi]/(2*Pi^3),10,120][[1]]
  • PARI
    prodnumrat(1+x^-6, 1) \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals (cosh(Pi)-cos(sqrt(3)*Pi))*sinh(Pi)/(2*Pi^3).
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(6*j)/j)). - Vaclav Kotesovec, Mar 28 2019

A334411 Decimal expansion of Product_{k>=1} (1 + 1/k^8).

Original entry on oeis.org

2, 0, 0, 8, 1, 5, 6, 0, 5, 4, 9, 9, 2, 7, 4, 5, 3, 1, 5, 1, 4, 9, 0, 3, 9, 4, 8, 2, 3, 2, 3, 4, 1, 3, 6, 9, 2, 1, 1, 9, 5, 3, 2, 1, 5, 9, 8, 3, 0, 9, 5, 0, 9, 7, 8, 7, 7, 0, 7, 4, 2, 9, 9, 6, 1, 7, 4, 2, 2, 7, 2, 5, 1, 1, 3, 8, 0, 5, 5, 2, 0, 9, 3, 4, 0, 6, 0, 5, 0, 1, 0, 2, 0, 2, 6, 9, 6, 3, 0, 3, 2, 1, 8, 7, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 27 2020

Keywords

Comments

From Vaclav Kotesovec, Aug 30 2024: (Start)
For m>0, Product_{k>=1} (1 + m/k^8) = (cosh(Pi*sqrt(2 - sqrt(2))*m^(1/8)) - cos(Pi*sqrt(2 + sqrt(2))*m^(1/8))) * (cosh(Pi*sqrt(2 + sqrt(2))*m^(1/8)) - cos(Pi*sqrt(2 - sqrt(2))*m^(1/8)))/(4*sqrt(m)*Pi^4).
If m tends to infinity, Product_{k>=1} (1 + m/k^8) ~ exp(Pi*sqrt(2*(2 + sqrt(2)))*m^(1/8)) / (16*Pi^4*sqrt(m)).
In general, if m tends to infinity and v > 2, Product_{k>=1} (1 + m/k^v) ~ exp(Pi*m^(1/v)/sin(Pi/v)) / ((2*Pi)^(v/2)*sqrt(m)). (End)

Examples

			2.00815605499274531514903948232341369211953215983095097877074299617422...
		

Crossrefs

Programs

  • Maple
    evalf(Product(1 + 1/j^8, j = 1..infinity), 120);
  • Mathematica
    RealDigits[Chop[N[Product[(1 + 1/n^8), {n, 1, Infinity}], 120]]][[1]]
  • PARI
    default(realprecision, 120); exp(sumalt(j=1, -(-1)^j*zeta(8*j)/j))

Formula

Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(8*j)/j)).
Equals (cos(sqrt(4 - 2*sqrt(2))*Pi) + cos(sqrt(4 + 2*sqrt(2))*Pi) + cosh(sqrt(4 - 2*sqrt(2))*Pi) + cosh(sqrt(4 + 2*sqrt(2))*Pi) - 2*cos(sqrt(2 - sqrt(2))*Pi) * cosh(sqrt(2 - sqrt(2))*Pi) - 2*cos(sqrt(2 + sqrt(2))*Pi) * cosh(sqrt(2 + sqrt(2))*Pi)) / (8*Pi^4).

A375841 a(n) = Product_{k=0..n} (k^4 + n).

Original entry on oeis.org

0, 2, 108, 19152, 8840000, 8908817400, 17303456226672, 59111538137501696, 331331804053754904576, 2885800103371503562500000, 37384163240259410286768056000, 694933775143924511454539020849152, 17989643936954432911290280974476623872, 632268529759009258574304284235050340614528
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^4 + n, {k, 0, n}], {n, 0, 15}]

Formula

a(n) ~ n^(4*n + 5/2) / exp(4*n - Pi*sqrt(2)*n^(1/4)).

A307216 Decimal expansion of Product_{k>=1} (1 + 1/k^5).

Original entry on oeis.org

2, 0, 7, 4, 2, 2, 5, 0, 4, 4, 7, 9, 6, 3, 7, 8, 9, 1, 3, 9, 0, 7, 0, 8, 9, 6, 8, 5, 9, 4, 3, 8, 4, 0, 5, 6, 9, 7, 7, 1, 2, 5, 3, 3, 7, 9, 6, 2, 2, 2, 7, 2, 8, 8, 3, 3, 4, 7, 3, 4, 0, 3, 6, 9, 8, 8, 3, 6, 1, 9, 6, 0, 5, 9, 6, 2, 5, 9, 0, 1, 5, 9, 1, 8, 6, 4, 7, 2, 4, 8, 5, 8, 4, 4, 4, 2, 9, 2, 3, 6, 6, 3, 2, 5, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 29 2019

Keywords

Examples

			2.07422504479637891390708968594384056977125337962227288334734036988361960596259...
		

Crossrefs

Programs

  • Maple
    evalf(Product(1 + 1/j^5, j = 1..infinity), 120);
  • Mathematica
    RealDigits[Chop[N[Product[(1 + 1/n^5), {n, 1, Infinity}], 120]]][[1]]
    With[{g = GoldenRatio}, Chop[N[1/(Gamma[1/(2*g^2) - I*5^(1/4)/(2*Sqrt[g])] * Gamma[g^2/2 + I*5^(1/4) * Sqrt[g]/2] * Gamma[g^2/2 - I*5^(1/4) * Sqrt[g]/2] * Gamma[1/(2*g^2) + I*5^(1/4)/(2*Sqrt[g])]), 120]]]
    N[1/Abs[Gamma[Exp[2*Pi*I/5]]*Gamma[Exp[6*Pi*I/5]]]^2, 120] (* Vaclav Kotesovec, Apr 27 2020 *)
  • PARI
    default(realprecision, 120); exp(sumalt(j=1, -(-1)^j*zeta(5*j)/j))

Formula

Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(5*j)/j)).
Equals 1/(Gamma(1/(2*phi^2) - i*(5^(1/4)/(2*sqrt(phi)))) * Gamma(phi^2/2 + i*5^(1/4)*(sqrt(phi)/2)) * Gamma(phi^2/2 - i*5^(1/4)*(sqrt(phi)/2)) * Gamma(1/(2*phi^2) + i*(5^(1/4)/(2*sqrt(phi))))), where i is the imaginary unit and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

A371219 Decimal expansion of Product_{k>=1} (1 - 1/(2*k+1)^4).

Original entry on oeis.org

9, 8, 5, 3, 5, 2, 0, 8, 4, 3, 8, 7, 2, 2, 0, 6, 2, 3, 3, 0, 3, 4, 9, 1, 1, 1, 3, 7, 9, 0, 6, 4, 8, 6, 7, 7, 1, 2, 1, 5, 9, 2, 5, 6, 3, 5, 6, 6, 8, 2, 8, 6, 3, 8, 6, 5, 3, 7, 8, 4, 8, 7, 8, 8, 8, 5, 1, 8, 5, 1, 4, 1, 2, 1, 3, 8, 2, 5, 6, 5, 2, 8, 6, 7, 9, 1, 3, 7, 8, 0, 8, 0, 6, 1, 5, 7, 8, 7, 5, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2024

Keywords

Examples

			0.98535208438722062330349111379064867712159256...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/8) Pi Cosh[Pi/2], 10, 100][[1]]

Formula

Equals (1/8) * Pi * cosh(Pi/2).
Showing 1-10 of 10 results.