cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A175615 Decimal expansion of sinh(Pi)/(4*Pi).

Original entry on oeis.org

9, 1, 9, 0, 1, 9, 4, 7, 7, 5, 9, 3, 7, 4, 4, 4, 3, 0, 1, 7, 3, 9, 2, 4, 3, 7, 3, 0, 0, 7, 0, 6, 5, 1, 6, 6, 6, 2, 6, 7, 8, 9, 0, 8, 6, 7, 0, 6, 9, 0, 7, 5, 6, 9, 3, 6, 9, 5, 0, 0, 8, 9, 8, 3, 8, 9, 3, 6, 1, 8, 3, 1, 0, 2, 7, 7, 5, 5, 5, 1, 8, 3, 0, 3, 3, 1, 3, 9, 8, 1, 6, 4, 7, 5, 8, 0, 7, 5, 5, 8, 8, 2, 1, 8, 8
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2010

Keywords

Examples

			0.91901947759...
		

Crossrefs

Programs

  • Maple
    sinh(Pi)/4/Pi; evalf(%) ;
  • Mathematica
    RealDigits[Sinh[Pi]/(4Pi),10,120][[1]] (* Harvey P. Dale, Feb 11 2023 *)
  • PARI
    exp(suminf(j=1, (1 - zeta(4*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020

Formula

Equals product_{n >= 2} (1-n^(-4)).
Equals A156648/4.
Equals exp(Sum_{j>=1} (1 - zeta(4*j))/j). - Vaclav Kotesovec, Apr 27 2020
Equals 1/(2*Gamma(2-i)*Gamma(2+i)). - Amiram Eldar, May 28 2021

A073017 Decimal expansion of the Product_{n>=1} (1 + 1/n^3).

Original entry on oeis.org

2, 4, 2, 8, 1, 8, 9, 7, 9, 2, 0, 9, 8, 8, 7, 0, 3, 2, 8, 7, 3, 6, 0, 4, 1, 4, 3, 6, 1, 7, 9, 1, 4, 6, 3, 5, 8, 1, 1, 8, 3, 6, 2, 9, 4, 4, 7, 8, 3, 3, 9, 0, 4, 9, 7, 6, 3, 2, 7, 4, 9, 9, 7, 4, 7, 2, 6, 4, 4, 4, 7, 3, 4, 1, 2, 0, 8, 6, 8, 3, 6, 8, 1, 2, 3, 8, 0, 5, 5, 0, 1, 5, 7, 2, 0, 5, 9, 0, 4, 3, 8, 8, 1, 3, 8
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Let X_1, X_2, ... be a sequence of independent Bernoulli trials with probability of success 1/n^3. Let Y be the position of the last success in the sequence. 1.428189... is the expected value of Y. - Geoffrey Critzer, Aug 19 2019
If m tends to infinity, Product_{k>=1} (1 + m/k^3) ~ exp(2*Pi*m^(1/3)/sqrt(3)) / (2^(3/2)*Pi^(3/2)*sqrt(m)). - Vaclav Kotesovec, Aug 30 2024

Examples

			2.42818979209887032873604143617914635811836294478339049763...
		

Crossrefs

Programs

Formula

Equals cosh(1/2 * sqrt(3) * Pi)/Pi.
Equals exp(Sum_{j>=1} (-(-1)^j*zeta(3*j)/j)). - Vaclav Kotesovec, Mar 28 2019
Equals Product_{n>=1} (1 + 1/(n^2 + n)). - Amiram Eldar, Sep 01 2020
Equals 3*Product_{n >= 2} (1-n^(-3)) = 3*A109219. - Robert FERREOL, Oct 06 2021

A175617 Decimal expansion of product_{n>=2} (1-n^(-6)).

Original entry on oeis.org

9, 8, 2, 6, 8, 4, 2, 7, 7, 7, 4, 2, 1, 9, 2, 5, 1, 8, 3, 2, 4, 4, 7, 5, 9, 1, 6, 2, 5, 7, 1, 3, 6, 3, 7, 3, 5, 1, 4, 8, 2, 8, 9, 9, 8, 4, 4, 9, 1, 9, 5, 5, 5, 1, 7, 9, 1, 6, 9, 3, 3, 9, 6, 5, 4, 4, 3, 7, 8, 7, 1, 0, 9, 0, 0, 3, 7, 0, 0, 8, 6, 2, 3, 6, 1, 8, 4, 8, 6, 6, 9, 9, 8, 0, 0, 7, 8, 4, 7, 5, 6, 1, 5, 7, 6
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2010

Keywords

Examples

			0.9826842777...
		

Crossrefs

Programs

  • Maple
    cosh(Pi*sqrt(3)/2)^2/6/Pi^2 ; evalf(%) ;
  • Mathematica
    RealDigits[(1 + Cosh[Sqrt[3]*Pi])/(12*Pi^2), 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    exp(suminf(j=1, (1 - zeta(6*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020

Formula

Equals product_{t=1..5} 1/Gamma(2-exp(Pi*i*t/3)), where i is the imaginary unit and Pi/3 = A019670.
Equals exp(Sum_{j>=1} (1 - zeta(6*j))/j). - Vaclav Kotesovec, Apr 27 2020

A258870 Decimal expansion of Product_{n>=1} (1+1/n^4).

Original entry on oeis.org

2, 1, 6, 7, 3, 6, 0, 6, 2, 5, 8, 8, 2, 2, 6, 1, 9, 5, 1, 9, 0, 0, 2, 3, 1, 3, 6, 6, 8, 4, 7, 0, 2, 7, 4, 4, 1, 8, 2, 1, 6, 1, 3, 1, 7, 2, 9, 6, 3, 4, 9, 8, 5, 0, 9, 7, 5, 6, 2, 3, 2, 5, 9, 9, 8, 8, 2, 2, 1, 3, 7, 8, 7, 1, 9, 4, 8, 5, 3, 8, 1, 6, 7, 7, 0, 4, 2, 6, 8, 1, 2, 3, 6, 4, 1, 5, 4, 4, 4, 7, 3, 7, 9, 5, 0, 3, 6, 4, 6, 4, 3, 4, 5, 8, 1, 4, 2, 9, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2015

Keywords

Comments

For m>0, Product_{k>=1} (1 + m/k^4) = (cosh(sqrt(2)*Pi*m^(1/4)) - cos(sqrt(2)*Pi*m^(1/4))) / (2*Pi^2*sqrt(m)). - Vaclav Kotesovec, Aug 30 2024

Examples

			2.16736062588226195190023136684702744182161317296349850975623259988...
		

Crossrefs

Programs

  • Maple
    evalf((cosh(sqrt(2)*Pi)-cos(sqrt(2)*Pi))/(2*Pi^2),120);
  • Mathematica
    RealDigits[(Cosh[Sqrt[2]*Pi]-Cos[Sqrt[2]*Pi])/(2*Pi^2),10,120][[1]]
  • PARI
    exp(sumalt(j=1, -(-1)^j*zeta(4*j)/j)) \\ Vaclav Kotesovec, Dec 15 2020

Formula

Equals (cosh(sqrt(2)*Pi)-cos(sqrt(2)*Pi))/(2*Pi^2).
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(4*j)/j)). - Vaclav Kotesovec, Mar 28 2019

A175619 Decimal expansion of Product_{n>=2} (1-n^(-8)).

Original entry on oeis.org

9, 9, 5, 9, 2, 3, 3, 1, 5, 0, 7, 7, 7, 8, 3, 6, 7, 1, 2, 0, 4, 1, 0, 6, 7, 4, 7, 3, 0, 8, 6, 0, 6, 6, 6, 7, 0, 6, 6, 2, 3, 0, 0, 1, 7, 2, 9, 6, 3, 3, 6, 3, 7, 2, 3, 9, 9, 8, 3, 3, 6, 3, 3, 0, 0, 2, 6, 0, 0, 0, 3, 1, 6, 8, 3, 0, 3, 1, 1, 9, 4, 0, 8, 9, 6, 9, 0, 7, 2, 9, 7, 6, 1, 2, 9, 0, 8, 5, 3, 2, 6, 4, 4, 0, 7
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2010

Keywords

Examples

			0.9959233150... = (255/256)*(6560/6561)*(65535/65536)*...
		

Crossrefs

Programs

  • Maple
    t := Pi/sqrt(2) ; sinh(Pi)*((sin(t)*cosh(t))^2+(cos(t)*sinh(t))^2)/8/Pi^3 ; evalf(%) ;
  • Mathematica
    RealDigits[ -Sin[(-1)^(1/4)*Pi]*Sin[(-1)^(3/4)*Pi]*Sinh[Pi] / (8*Pi^3) // Re, 10, 105] // First(* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    exp(suminf(j=1, (1 - zeta(8*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020
    
  • PARI
    prodnumrat(1-x^-8, 2) \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)) * sinh(Pi) / (16*Pi^3). - Vaclav Kotesovec, Apr 27 2020
Equals exp(Sum_{j>=1} (1 - zeta(8*j))/j). - Vaclav Kotesovec, Apr 27 2020

A258871 Decimal expansion of Product_{n>=1} (1+1/n^6).

Original entry on oeis.org

2, 0, 3, 4, 7, 4, 0, 8, 3, 5, 0, 0, 9, 4, 2, 9, 0, 6, 3, 5, 8, 6, 8, 2, 0, 8, 0, 9, 6, 4, 2, 8, 5, 0, 8, 9, 7, 7, 1, 0, 9, 0, 1, 0, 0, 6, 2, 3, 9, 2, 5, 4, 6, 9, 0, 5, 5, 7, 5, 3, 9, 4, 8, 0, 4, 5, 2, 9, 8, 4, 1, 2, 0, 1, 9, 1, 5, 2, 5, 8, 4, 9, 1, 3, 5, 3, 5, 9, 8, 1, 5, 4, 9, 6, 6, 7, 0, 7, 6, 8, 6, 7, 8, 1, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2015

Keywords

Comments

From Vaclav Kotesovec, Aug 30 2024: (Start)
For m>0, Product_{k>=1} (1 + m/k^6) = (cosh(Pi*m^(1/6)) - cos(sqrt(3)*Pi*m^(1/6))) * sinh(Pi*m^(1/6)) / (2*Pi^3*sqrt(m)).
If m tends to infinity, Product_{k>=1} (1 + m/k^6) ~ exp(2*Pi*m^(1/6)) / (8*Pi^3*sqrt(m)). (End)

Examples

			2.03474083500942906358682080964285089771090100623925469055753948...
		

Crossrefs

Programs

  • Maple
    evalf((cosh(Pi)-cos(sqrt(3)*Pi))*sinh(Pi)/(2*Pi^3), 120);
  • Mathematica
    RealDigits[(Cosh[Pi]-Cos[Sqrt[3]*Pi])*Sinh[Pi]/(2*Pi^3),10,120][[1]]
  • PARI
    prodnumrat(1+x^-6, 1) \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals (cosh(Pi)-cos(sqrt(3)*Pi))*sinh(Pi)/(2*Pi^3).
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(6*j)/j)). - Vaclav Kotesovec, Mar 28 2019

A334411 Decimal expansion of Product_{k>=1} (1 + 1/k^8).

Original entry on oeis.org

2, 0, 0, 8, 1, 5, 6, 0, 5, 4, 9, 9, 2, 7, 4, 5, 3, 1, 5, 1, 4, 9, 0, 3, 9, 4, 8, 2, 3, 2, 3, 4, 1, 3, 6, 9, 2, 1, 1, 9, 5, 3, 2, 1, 5, 9, 8, 3, 0, 9, 5, 0, 9, 7, 8, 7, 7, 0, 7, 4, 2, 9, 9, 6, 1, 7, 4, 2, 2, 7, 2, 5, 1, 1, 3, 8, 0, 5, 5, 2, 0, 9, 3, 4, 0, 6, 0, 5, 0, 1, 0, 2, 0, 2, 6, 9, 6, 3, 0, 3, 2, 1, 8, 7, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 27 2020

Keywords

Comments

From Vaclav Kotesovec, Aug 30 2024: (Start)
For m>0, Product_{k>=1} (1 + m/k^8) = (cosh(Pi*sqrt(2 - sqrt(2))*m^(1/8)) - cos(Pi*sqrt(2 + sqrt(2))*m^(1/8))) * (cosh(Pi*sqrt(2 + sqrt(2))*m^(1/8)) - cos(Pi*sqrt(2 - sqrt(2))*m^(1/8)))/(4*sqrt(m)*Pi^4).
If m tends to infinity, Product_{k>=1} (1 + m/k^8) ~ exp(Pi*sqrt(2*(2 + sqrt(2)))*m^(1/8)) / (16*Pi^4*sqrt(m)).
In general, if m tends to infinity and v > 2, Product_{k>=1} (1 + m/k^v) ~ exp(Pi*m^(1/v)/sin(Pi/v)) / ((2*Pi)^(v/2)*sqrt(m)). (End)

Examples

			2.00815605499274531514903948232341369211953215983095097877074299617422...
		

Crossrefs

Programs

  • Maple
    evalf(Product(1 + 1/j^8, j = 1..infinity), 120);
  • Mathematica
    RealDigits[Chop[N[Product[(1 + 1/n^8), {n, 1, Infinity}], 120]]][[1]]
  • PARI
    default(realprecision, 120); exp(sumalt(j=1, -(-1)^j*zeta(8*j)/j))

Formula

Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(8*j)/j)).
Equals (cos(sqrt(4 - 2*sqrt(2))*Pi) + cos(sqrt(4 + 2*sqrt(2))*Pi) + cosh(sqrt(4 - 2*sqrt(2))*Pi) + cosh(sqrt(4 + 2*sqrt(2))*Pi) - 2*cos(sqrt(2 - sqrt(2))*Pi) * cosh(sqrt(2 - sqrt(2))*Pi) - 2*cos(sqrt(2 + sqrt(2))*Pi) * cosh(sqrt(2 + sqrt(2))*Pi)) / (8*Pi^4).

A175616 Decimal expansion of product_{n>=2} (1-n^(-5)).

Original entry on oeis.org

9, 6, 3, 2, 5, 6, 5, 6, 1, 7, 5, 7, 5, 5, 9, 0, 9, 7, 3, 7, 3, 0, 4, 6, 0, 3, 4, 8, 8, 3, 9, 7, 5, 1, 9, 5, 5, 4, 3, 5, 2, 0, 7, 5, 7, 8, 5, 3, 4, 2, 2, 6, 3, 7, 3, 9, 5, 1, 6, 8, 8, 5, 0, 4, 2, 7, 6, 9, 4, 4, 2, 1, 8, 8, 7, 6, 7, 8, 1, 3, 0, 4, 6, 3, 6, 3, 5, 8, 0, 4, 6, 8, 6, 0, 9, 7, 9, 6, 9, 8, 7, 0, 9, 6, 8
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2010

Keywords

Examples

			0.96325656175755909737304603488397519554352075785342263739516...
		

Crossrefs

Programs

  • Mathematica
    g[k_] := Gamma[Root[1 - # + #^2 - #^3 + #^4 & , k]]; RealDigits[ 1/(5*g[1]*g[2]*g[3]*g[4]) // Re, 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    exp(suminf(j=1, (1 - zeta(5*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020

Formula

Equals product_{t=1..4} 1/Gamma(2-exp(2*Pi*i*t/5)), where i is the imaginary unit.
Equals exp(Sum_{j>=1} (1 - zeta(5*j))/j). - Vaclav Kotesovec, Apr 27 2020
Equals 1/(Gamma(2 + phi/2 - i*(5^(1/4) / (2*sqrt(phi)))) * Gamma(2 + phi/2 + i*(5^(1/4) / (2*sqrt(phi)))) * Gamma(2 - 1/(2*phi) - i*5^(1/4)*(sqrt(phi)/2)) * Gamma(2 - 1/(2*phi) + i*5^(1/4)*(sqrt(phi)/2))), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and i is the imaginary unit. - Vaclav Kotesovec, Dec 15 2020

A175618 Decimal expansion of product_{n>=2} (1-n^(-7)).

Original entry on oeis.org

9, 9, 1, 6, 5, 4, 9, 5, 3, 4, 7, 2, 8, 3, 4, 4, 5, 7, 4, 0, 1, 3, 2, 3, 3, 7, 0, 5, 6, 9, 0, 2, 7, 4, 2, 5, 8, 6, 4, 2, 6, 8, 0, 8, 3, 5, 4, 1, 0, 3, 8, 5, 0, 3, 4, 9, 7, 6, 6, 3, 4, 9, 2, 1, 4, 1, 7, 0, 5, 1, 4, 3, 6, 3, 2, 8, 4, 3, 1, 9, 7, 1, 1, 8, 0, 2, 3, 9, 5, 0, 3, 8, 3, 0, 4, 3, 7, 9, 5, 5, 2, 1, 1, 9, 5
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2010

Keywords

Examples

			0.99165495...
		

Crossrefs

Programs

  • Mathematica
    N[1/(7*Product[ Gamma[(-1)^(8*k/7 + 1)], {k, 1, 6}]), 105] // Re // RealDigits // First (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    exp(suminf(j=1, (1 - zeta(7*j))/j)) \\ Vaclav Kotesovec, Dec 15 2020

Formula

Equals 1/product_{t=1..6} Gamma(2-exp(2*Pi*i*t/7)), where i is the imaginary unit and 2*Pi/7 = A019695.
Equals exp(Sum_{j>=1} (1 - zeta(7*j))/j). - Vaclav Kotesovec, Dec 15 2020

A365319 Decimal expansion of abs(Gamma(exp(i*Pi/3))).

Original entry on oeis.org

6, 4, 1, 7, 3, 9, 3, 7, 2, 7, 8, 4, 7, 5, 5, 3, 2, 1, 5, 3, 8, 7, 3, 4, 3, 8, 8, 4, 1, 2, 2, 1, 4, 0, 3, 6, 1, 6, 8, 9, 2, 2, 9, 9, 1, 1, 6, 5, 3, 1, 6, 5, 9, 4, 0, 0, 8, 9, 4, 8, 4, 7, 6, 9, 3, 9, 8, 9, 0, 1, 3, 5, 5, 2, 9, 0, 3, 7, 4, 6, 4, 4, 2, 4, 7, 9, 5, 6, 1, 5, 3, 3, 8, 9, 0, 7, 4, 7, 1, 9, 8, 8, 9, 2, 5, 5
Offset: 0

Views

Author

Artur Jasinski, Sep 01 2023

Keywords

Comments

Also abs(Gamma(exp(i*2*Pi/3))).
For real part of Gamma(exp(i*Pi/3)) see A365317.
For negative imaginary part of Gamma(exp(i*Pi/3)) see A365318.

Examples

			0.641739372784755...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Abs[Gamma[Cos[Pi/3] + I Sin[Pi/3]]], 10, 106][[1]]
    (* or *)
    RealDigits[Sqrt[Pi/Cosh[Pi Sqrt[3]/2]], 10, 106][[1]]
  • PARI
    abs(gamma(exp(I*Pi/3))) \\ Michel Marcus, Sep 01 2023

Formula

Equals sqrt(Pi/cosh(Pi*sqrt(3)/2)).
Equals 1/sqrt(3*A109219).
Showing 1-10 of 12 results. Next