cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090986 Decimal expansion of Pi/sinh(Pi).

Original entry on oeis.org

2, 7, 2, 0, 2, 9, 0, 5, 4, 9, 8, 2, 1, 3, 3, 1, 6, 2, 9, 5, 0, 2, 3, 6, 5, 8, 3, 6, 7, 2, 0, 3, 7, 5, 5, 5, 8, 4, 0, 7, 1, 8, 3, 6, 3, 4, 6, 0, 3, 1, 5, 9, 4, 9, 5, 0, 6, 8, 9, 6, 7, 8, 3, 8, 5, 6, 2, 4, 6, 1, 9, 1, 3, 6, 9, 4, 8, 7, 8, 8, 8, 1, 9, 1, 1, 5, 3, 1, 1, 7, 2, 1, 0, 6, 9, 3, 7, 6, 4, 4, 8, 6, 1, 0
Offset: 0

Views

Author

Benoit Cloitre, Feb 28 2004

Keywords

Comments

Or, decimal expansion of Pi * csch(Pi).

Examples

			0.272029054982133162950236583672...
		

References

  • Jonathan M. Borwein, David H. Bailey, and Roland Girgensohn, "Two Products", Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery, Natick, MA: A. K. Peters, 2004, pp. 4-7.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sinh(Pi(R)); // G. C. Greubel, Feb 02 2019
    
  • Mathematica
    Re[N[Gamma[1+I]*Gamma[1-I], 104]] (* Vaclav Kotesovec, Dec 09 2015 *)
    RealDigits[Pi/Sinh[Pi],10,120][[1]] (* Harvey P. Dale, May 16 2019 *)
  • PARI
    default(realprecision, 100);  Pi/sinh(Pi) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    numerical_approx(pi/sinh(pi), digits=100) # G. C. Greubel, Feb 02 2019

Formula

Equals Pi/sinh(Pi) = Product_{k>=1} k^2/(k^2+1).
Equals Pi * csch(Pi) = Product_{n >= 2} (n^2 - 1)/(n^2 + 1). - Jonathan Vos Post, Dec 07 2005
Equals Gamma(1+i)*Gamma(1-i), where i is the imaginary unit. - Vaclav Kotesovec, Dec 10 2015
Equals 1 - 2*Sum_{n >= 1} (-1)^(n+1)/(n^2 + 1). - Peter Bala, Jan 01 2023
Equals A212879^2. - Amiram Eldar, Oct 25 2024

A175619 Decimal expansion of Product_{n>=2} (1-n^(-8)).

Original entry on oeis.org

9, 9, 5, 9, 2, 3, 3, 1, 5, 0, 7, 7, 7, 8, 3, 6, 7, 1, 2, 0, 4, 1, 0, 6, 7, 4, 7, 3, 0, 8, 6, 0, 6, 6, 6, 7, 0, 6, 6, 2, 3, 0, 0, 1, 7, 2, 9, 6, 3, 3, 6, 3, 7, 2, 3, 9, 9, 8, 3, 3, 6, 3, 3, 0, 0, 2, 6, 0, 0, 0, 3, 1, 6, 8, 3, 0, 3, 1, 1, 9, 4, 0, 8, 9, 6, 9, 0, 7, 2, 9, 7, 6, 1, 2, 9, 0, 8, 5, 3, 2, 6, 4, 4, 0, 7
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2010

Keywords

Examples

			0.9959233150... = (255/256)*(6560/6561)*(65535/65536)*...
		

Crossrefs

Programs

  • Maple
    t := Pi/sqrt(2) ; sinh(Pi)*((sin(t)*cosh(t))^2+(cos(t)*sinh(t))^2)/8/Pi^3 ; evalf(%) ;
  • Mathematica
    RealDigits[ -Sin[(-1)^(1/4)*Pi]*Sin[(-1)^(3/4)*Pi]*Sinh[Pi] / (8*Pi^3) // Re, 10, 105] // First(* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    exp(suminf(j=1, (1 - zeta(8*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020
    
  • PARI
    prodnumrat(1-x^-8, 2) \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)) * sinh(Pi) / (16*Pi^3). - Vaclav Kotesovec, Apr 27 2020
Equals exp(Sum_{j>=1} (1 - zeta(8*j))/j). - Vaclav Kotesovec, Apr 27 2020
Showing 1-2 of 2 results.