cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A307242 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1)*sigma_2(k+1)*a(n-k), where sigma_2() is the sum of squares of divisors (A001157).

Original entry on oeis.org

1, 5, 15, 46, 159, 570, 2036, 7208, 25400, 89456, 315335, 1112286, 3923867, 13841052, 48818892, 172186234, 607314043, 2142064478, 7555322206, 26648517536, 93992371863, 331521717928, 1169314641890, 4124305724658, 14546896171716, 51308559972146, 180971133233105, 638305788168090
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) DivisorSigma[2, k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 27}]
    nmax = 27; CoefficientList[Series[-x/Sum[k^2 (-x)^k/(1 - (-x)^k), {k, 1, nmax + 1}], {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[1/D[Log[Product[(1 - (-x)^k)^k, {k, 1, nmax + 1}]], x], {x, 0, nmax}], x]

Formula

G.f.: -x / Sum_{k>=1} k^2*(-x)^k/(1 - (-x)^k).
G.f.: 1 / (d/dx) log(Product_{k>=1} (1 - (-x)^k)^k).
Showing 1-1 of 1 results.