cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A307241 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1)*d(k+1)*a(n-k), where d() is the number of divisors (A000005).

Original entry on oeis.org

1, 2, 2, 3, 6, 12, 23, 42, 75, 135, 248, 460, 849, 1554, 2837, 5192, 9527, 17490, 32083, 58809, 107781, 197578, 362280, 664320, 1218069, 2233202, 4094289, 7506602, 13763219, 25234674, 46266927, 84828138, 155528132, 285154061, 522819002, 958568628, 1757496665, 3222295912
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) DivisorSigma[0, k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 37}]
    nmax = 37; CoefficientList[Series[-x/Sum[(-x)^k/(1 - (-x)^k), {k, 1, nmax + 1}], {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[1/D[Log[Product[(1 - (-x)^k)^(1/k), {k, 1, nmax + 1}]], x], {x, 0, nmax}], x]

Formula

G.f.: -x / Sum_{k>=1} (-x)^k/(1 - (-x)^k).
G.f.: 1 / (d/dx) log(Product_{k>=1} (1 - (-x)^k)^(1/k)).
Showing 1-1 of 1 results.