A307260 Expansion of (1/(1 + x)) * Product_{k>=1} (1 + k*x^k/(1 + x)^k).
1, 0, 1, 1, -4, 14, -35, 77, -161, 356, -873, 2267, -5787, 13850, -30361, 59934, -103754, 147968, -139049, -58998, 730972, -2430881, 6333238, -15548722, 39845197, -110775861, 325257904, -960503811, 2756222486, -7568564555, 19815541729, -49548068461, 118752506024
Offset: 0
Keywords
Programs
-
Maple
a:=series((1/(1+x))*mul(1+k*x^k/(1+x)^k,k=1..100),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 03 2019
-
Mathematica
nmax = 32; CoefficientList[Series[1/(1 + x) Product[(1 + k x^k/(1 + x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A022629(k).
Comments