cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A307265 Expansion of Product_{k>=1} 1/(1 + (-x)^k/(1 - x)^k).

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 27, 58, 122, 257, 549, 1190, 2600, 5683, 12367, 26749, 57530, 123202, 263115, 561131, 1196248, 2550975, 5443115, 11620526, 24814735, 52979512, 113038103, 240936717, 512916683, 1090501249, 2315608462, 4911611864, 10408318627, 22040127864
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 01 2019

Keywords

Comments

First differences of the binomial transform of A000700.

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1+(-x)^k/(1-x)^k),k=1..50),x=0,34): seq(coeff(a,x,n),n=0..33); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 33; CoefficientList[Series[Product[1/(1 + (-x)^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(2*k-1)/(1 - x)^(2*k-1)).
a(n) ~ 2^(n-2) * exp(Pi*sqrt(n/3)/2 + Pi^2/96) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 01 2019
Showing 1-1 of 1 results.