cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307304 Number of inequivalent ways of placing 2 nonattacking rooks on n X n board up to rotations and reflections of the board.

Original entry on oeis.org

0, 1, 4, 13, 31, 66, 123, 214, 346, 535, 790, 1131, 1569, 2128, 2821, 3676, 4708, 5949, 7416, 9145, 11155, 13486, 16159, 19218, 22686, 26611, 31018, 35959, 41461, 47580, 54345, 61816, 70024, 79033, 88876, 99621, 111303, 123994, 137731, 152590, 168610, 185871
Offset: 1

Views

Author

Mo Li, Apr 19 2019

Keywords

Examples

			For n = 4 the a(4) = 13 solutions are
{{1,0,0,0}}  {{1,0,0,0}}  {{1,0,0,0}}
{{0,1,0,0}}  {{0,0,1,0}}  {{0,0,0,1}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
—————————————————————————————————————
{{1,0,0,0}}  {{1,0,0,0}}  {{1,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,1,0}}  {{0,0,0,1}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,1}}
—————————————————————————————————————
{{0,1,0,0}}  {{0,1,0,0}}  {{0,1,0,0}}
{{1,0,0,0}}  {{0,0,1,0}}  {{0,0,0,1}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
—————————————————————————————————————
{{0,1,0,0}}  {{0,1,0,0}}  {{0,1,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,1,0}}  {{0,0,0,1}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,1,0}}
—————————————————————————————————————
{{0,0,0,0}}
{{0,1,0,0}}
{{0,0,1,0}}
{{0,0,0,0}}
		

Crossrefs

Programs

  • Mathematica
    Table[
    Piecewise[{{(n (n^3 - 2 n^2 + 6 n - 4))/16, Mod[n, 2] == 0},
    {((n - 1) (n^3 - n^2 + 5 n - 1))/16, Mod[n, 2] == 1}}],{n, 20}]

Formula

a(n) = (1/16)*n*(n^3-2n^2+6n-4) if n is even;
a(n) = (1/16)*(n-1)*(n^3-n^2+5n-1) if n is odd.
G.f.: -x^2*(x^2+1)*(x^2+x+1)/((x+1)^2*(x-1)^5). - Alois P. Heinz, Apr 26 2019