A307304 Number of inequivalent ways of placing 2 nonattacking rooks on n X n board up to rotations and reflections of the board.
0, 1, 4, 13, 31, 66, 123, 214, 346, 535, 790, 1131, 1569, 2128, 2821, 3676, 4708, 5949, 7416, 9145, 11155, 13486, 16159, 19218, 22686, 26611, 31018, 35959, 41461, 47580, 54345, 61816, 70024, 79033, 88876, 99621, 111303, 123994, 137731, 152590, 168610, 185871
Offset: 1
Examples
For n = 4 the a(4) = 13 solutions are {{1,0,0,0}} {{1,0,0,0}} {{1,0,0,0}} {{0,1,0,0}} {{0,0,1,0}} {{0,0,0,1}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} ————————————————————————————————————— {{1,0,0,0}} {{1,0,0,0}} {{1,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,1,0}} {{0,0,0,1}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,1}} ————————————————————————————————————— {{0,1,0,0}} {{0,1,0,0}} {{0,1,0,0}} {{1,0,0,0}} {{0,0,1,0}} {{0,0,0,1}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} ————————————————————————————————————— {{0,1,0,0}} {{0,1,0,0}} {{0,1,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,1,0}} {{0,0,0,1}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,0,0}} {{0,0,1,0}} ————————————————————————————————————— {{0,0,0,0}} {{0,1,0,0}} {{0,0,1,0}} {{0,0,0,0}}
Links
- Leisure Maths Entertainment Forum, 2 nonattacking rooks on n X n board, Chinese blog.
Programs
-
Mathematica
Table[ Piecewise[{{(n (n^3 - 2 n^2 + 6 n - 4))/16, Mod[n, 2] == 0}, {((n - 1) (n^3 - n^2 + 5 n - 1))/16, Mod[n, 2] == 1}}],{n, 20}]
Formula
a(n) = (1/16)*n*(n^3-2n^2+6n-4) if n is even;
a(n) = (1/16)*(n-1)*(n^3-n^2+5n-1) if n is odd.
G.f.: -x^2*(x^2+1)*(x^2+x+1)/((x+1)^2*(x-1)^5). - Alois P. Heinz, Apr 26 2019