A307311 Expansion of Product_{k>=1} 1/(1 + x^k/(1 - x)^k).
1, -1, -1, -2, -3, -4, -5, -6, -6, -1, 19, 74, 200, 461, 977, 1987, 3976, 7902, 15559, 30105, 56778, 103833, 183765, 314882, 523007, 841752, 1305431, 1916607, 2540433, 2609983, 381628, -8814988, -36463325, -109113400, -285322360, -689608522, -1579574566, -3477967848
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
m:=40; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(&*[(1+x^k/(1-x)^k): k in [1..m+2]]) )); // G. C. Greubel, Apr 03 2019 -
Maple
a:=series(mul(1/(1+x^k/(1-x)^k),k=1..100), x=0,38): seq(coeff(a, x, n), n=0..37); # Paolo P. Lava, Apr 02 2019
-
Mathematica
nmax = 40; CoefficientList[Series[Product[1/(1 + x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
PARI
m=40; my(x='x+O('x^m)); Vec( 1/prod(k=1,m+2, (1+x^k/(1-x)^k)) ) \\ G. C. Greubel, Apr 03 2019
-
Sage
m=40; (1/product(1+x^k/(1-x)^k for k in (1..m+2))).series(x, m).coefficients(x, sparse=False) # G. C. Greubel, Apr 03 2019
Comments