A307315 Primes p such that p + A007953(p) is the square of a prime.
2, 17, 347, 521, 10601, 32027, 39569, 58061, 62969, 100469, 109541, 120401, 398129, 426383, 434261, 829883, 896771, 935063, 1190261, 1216583, 1261109, 1559963, 1697771, 2105381, 2128649, 2505857, 2778851, 2886563, 2920649, 3051977, 3157703, 3636617, 4068257, 5139257, 5480249, 5650097, 5938931
Offset: 1
Examples
a(3)= 347 is in the sequence because 347+3+4+7=361=19^2 and 347 and 19 are primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(q) local m,d,nmin; m:= q^2; d:= ilog10(m)+1; nmin:= m - 9*d; nmin:= nmin + ((5-nmin) mod 6); op(select(t -> t + convert(convert(t,base,10),`+`)=m and isprime(t), {seq(n, n=nmin .. m-2, 6)})) end proc: f(2):= 2: sort(map(f, [seq(ithprime(i),i=1..2000)]));
-
PARI
is(n) = my(x=n+sumdigits(n)); isprimepower(x)==2 forprime(p=1, 6e6, if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Apr 02 2019
Comments