cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307316 Number of unlabeled leafless loopless multigraphs with n edges.

Original entry on oeis.org

1, 0, 1, 2, 5, 11, 34, 87, 279, 897, 3129, 11458, 44576, 181071, 770237, 3407332, 15641159, 74270464, 364014060, 1837689540, 9540175803, 50853577811, 277976050975, 1556372791835, 8916484189284, 52220798342832, 312389223102731, 1907282708797831, 11876576923779692, 75376983176576501, 487295169002095058
Offset: 0

Views

Author

Patrick T. Komiske, Apr 02 2019

Keywords

Comments

Multigraphs with no loops and no vertices of degree 1.
The initial terms were computed with Nauty.
Conjecturally, the asymptotic number of completely symmetric polynomials of degree n up to momentum conservation in the limit as the number of particles increases.

Examples

			For n=4 the multigraphs (as sets of edges) are {(0,1),(1,2),(2,3),(3,0)}, {(0,1),(0,1),(1,2),(2,0)}, {(0,1),(0,1),(0,1),(0,1)}, {(0,1),(0,1),(1,2),(1,2)}, and {(0,1),(0,1),(2,3),(2,3)}.
		

Crossrefs

Conjecturally the same as A226919. Possibly also A254342.
Row sums of A370063.
Cf. A050535, A307317 (connected), A369286, A369290 (simple graphs), A369927.

Programs

  • PARI
    \\ See also A370063 for a more efficient program.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    seq(n)={my(s=0); forpart(p=2*n, s+=permcount(p)*prod(i=1, #p, 1-x^p[i])/edges(p, w->1-x^w + O(x*x^n))); Vec(s/(2*n)!)} \\ Andrew Howroyd, Feb 01 2024

Formula

Euler transform of A307317.

Extensions

a(0)=1 prepended and a(17) onwards from Andrew Howroyd, Feb 01 2024