A307345 Numbers k such that every prime p <= sqrt(k) divides k*(k-1).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 30, 31, 36, 40, 45, 46, 70, 85, 91, 105, 106, 120
Offset: 1
Examples
120 is in the sequence because all primes <= sqrt(120) (namely 2,3,5,7) divide 120*119.
Links
- P. Dusart, Estimates of Some Functions Over Primes without R.H., arXiv:1002.0442 [math.NT], 2010.
Crossrefs
Contains A323215.
Programs
-
Maple
Res:= NULL: P:= 1: q:= 2: t:= 4: for n from 1 to 10^6 do if n = t then P:= P*q; q:= nextprime(q); t:= q^2 fi; if n*(n-1) mod P = 0 then Res:= Res, n fi od: Res;
-
Mathematica
seqQ[k_] := AllTrue[Select[Range@Floor@Sqrt@k, PrimeQ], Divisible[k (k - 1), #] &]; Select[Range[120], seqQ] (* Amiram Eldar, Apr 03 2019 *)
-
PARI
isok(k) = forprime(p=1, sqrtint(k), if (k*(k-1) % p, return(0))); return(1); \\ Michel Marcus, Apr 05 2019
-
Sage
def isA307345(k): r = prime_range(isqrt(k)+1) return all([p.divides(k*(k-1)) for p in r]) print([n for n in (1..120) if isA307345(n)]) # Peter Luschny, Apr 03 2019
Comments