A307375 Expansion of Sum_{j>=0} j!*x^j / Product_{k=1..j} (1 - k^2*x).
1, 1, 3, 17, 151, 1893, 31499, 666169, 17351967, 543441005, 20079329875, 861908850561, 42439075349543, 2371469004695797, 149022897087857691, 10448429535366899273, 811758520658841809839, 69463012765807086749949, 6511800419610377560644707, 665560984365147223546851985
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..303
Programs
-
Maple
b:= proc(n, x, y) option remember; `if`(n=0, 1, `if`(n::odd, 0, b(n-1, y, x+1))+b(n-1, y, x)*x+b(n-1, y, x)*y) end: a:= n-> b(2*n, 0$2): seq(a(n), n=0..19); # Alois P. Heinz, Jun 10 2023
-
Mathematica
nmax = 19; CoefficientList[Series[Sum[j! x^j/Product[(1 - k^2 x), {k, 1, j}], {j, 0, nmax}], {x, 0, nmax}], x]
Comments