cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307392 Number of partitions of n with at most one part in the interval [i*(i+1)/2, i+(i*(i+1)/2)] for all nonnegative integers i.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 6, 9, 11, 12, 12, 12, 13, 15, 18, 22, 27, 34, 42, 50, 56, 60, 63, 66, 70, 76, 84, 94, 106, 120, 136, 154, 177, 206, 241, 279, 317, 352, 381, 404, 423, 442, 464, 492, 528, 574, 630, 694, 764, 839, 920, 1008, 1104, 1213, 1341, 1494, 1674, 1878
Offset: 0

Views

Author

Igor Haladjian, Apr 06 2019

Keywords

Comments

The intervals are: [1,2], [3,5], [6,9], [10,14], [15,20], [21,27], [28,35], [36,44], [45,54], [55,65], ... .

Examples

			a(0)=1 by definition of the empty partition.
a(10)=6 because 10=9+1=8+2=7+3=6+4=6+3+1 (for example, you cannot take 5+5 or 7+2+1 because of the definition of a(n)).
		

Crossrefs

Programs

  • Maple
    f:= n-> 1+add(x^j, j=n*(n+1)/2..n*(n+3)/2):
    a:= n-> coeff(mul(f(k), k=1..ceil((sqrt(9+8*n)-3)/2)), x, n):
    seq(a(n), n=0..61);
  • PARI
    f(n, x) = (1+sum(j=n*(n+1)/2, n*(n+3)/2, x^j));
    a(n) = polcoef(prod(k=1, ceil((sqrt(9+8*n)-3)/2), f(k, x)), n, x); \\ version 2.11.0 or newer; Michel Marcus, Apr 08 2019
    
  • PARI
    first(n) = v = Vecrev(Vec(a(n))); vector(n, i, v[i]) \\ using a(n) from above \\ David A. Corneth, Apr 08 2019

Formula

G.f.: Product_{n>=0} (1 + Sum_{k=(n*(n+1)/2)..(n*(n+3)/2)} x^k).