A307394 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k+x^k).
1, 1, 3, 1, 4, 6, 1, 4, 9, 10, 1, 4, 10, 14, 15, 1, 4, 10, 19, 15, 21, 1, 4, 10, 20, 28, 8, 28, 1, 4, 10, 20, 34, 28, -7, 36, 1, 4, 10, 20, 35, 48, 1, -22, 45, 1, 4, 10, 20, 35, 55, 48, -80, -21, 55, 1, 4, 10, 20, 35, 56, 75, 0, -242, 12, 66, 1, 4, 10, 20, 35, 56, 83, 75, -164, -485, 77, 78
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 3, 4, 4, 4, 4, 4, 4, 4, 4, ... 6, 9, 10, 10, 10, 10, 10, 10, 10, ... 10, 14, 19, 20, 20, 20, 20, 20, 20, ... 15, 15, 28, 34, 35, 35, 35, 35, 35, ... 21, 8, 28, 48, 55, 56, 56, 56, 56, ... 28, -7, 1, 48, 75, 83, 84, 84, 84, ... 36, -22, -80, 0, 75, 110, 119, 120, 120, ... 45, -21, -242, -164, 0, 110, 154, 164, 165, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[(-1)^j * Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
Formula
A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j * binomial(n+3,k*j+3).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} (-1)^j * binomial(i+1,k*j+1) * binomial(n-i+1,k*j+1).