A307410 Numerators of the product in the singular series.
1, 1, 1, 1, 3, 1, 5, 1, 1, 3, 9, 1, 11, 5, 3, 1, 15, 1, 17, 3, 5, 9, 21, 1, 3, 11, 1, 5, 27, 3, 29, 1, 9, 15, 5, 1, 35, 17, 11, 3, 39, 5, 41, 9, 3, 21, 45, 1, 5, 3, 15, 11, 51, 1, 27, 5, 17, 27, 57, 3, 59, 29, 5, 1, 11, 9, 65, 15, 21, 5, 69, 1, 71, 35, 3, 17, 3, 11, 77, 3, 1, 39, 81, 5, 45
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- John Omielan, How do you compute the singular series?, Mathematics Stack Exchange.
- Terence Tao, Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges. See the next formula after equation 2.
Programs
-
Maple
f:= proc(n) numer(mul((p-2)/(p-1),p=select(type,numtheory:-factorset(n),odd))) end proc: map(f, [$1..100]); # Robert Israel, Apr 07 2019
-
Mathematica
Table[Times@@(DeleteDuplicates[DeleteCases[DeleteCases[Exp[MangoldtLambda[Divisors[h]]], 1],2]] - 2)/Times@@(DeleteDuplicates[DeleteCases[DeleteCases[Exp[MangoldtLambda[Divisors[h]]], 1], 2]] - 1), {h, 1, 85}] Numerator[%] f[p_, e_] := If[p == 2, 1, (p-2)/(p-1)]; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Mar 03 2025 *)
-
PARI
a(n) = my(f=factor(n)[,1]~); numerator(prod(k=1, #f, if (f[k]>2, (f[k]-2)/(f[k]-1), 1))); \\ Michel Marcus, Apr 07 2019
Formula
a(n) = numerator of Product_{p|n;p>2}(p-2)/(p-1) where p is a prime number.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A380839(k) = 2 * Product_{p prime} (1-1/(p^2-p)) = 2 * A005596 = 0.7479116272384045761094... . - Amiram Eldar, Mar 03 2025
Comments