cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A380839 Numerators of J(n) = Product_{p|n, p odd prime} (p - 1)/(p - 2).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 2, 12, 6, 8, 1, 16, 2, 18, 4, 12, 10, 22, 2, 4, 12, 2, 6, 28, 8, 30, 1, 20, 16, 8, 2, 36, 18, 24, 4, 40, 12, 42, 10, 8, 22, 46, 2, 6, 4, 32, 12, 52, 2, 40, 6, 36, 28, 58, 8, 60, 30, 12, 1, 16, 20, 66, 16, 44, 8, 70, 2, 72, 36
Offset: 1

Views

Author

Artur Jasinski, Feb 05 2025

Keywords

Comments

This sequence is similar to A173557 but differences occurs for indices n=35,65,70,...
Coefficients J(n)=a(n)/A307410(n) occurs in many formulas on density of primes with gap 2*n.
Sylvester was the first who uses these coefficients at 1871.

Examples

			1, 1, 2, 1, 4/3, 2, 6/5, 1, 2, 4/3, 10/9, 2, 12/11, ...
a(35) = 8 because 35 = 5 * 7 and then product is ((5-1)/(5-2))*((7-1)/(7-2)) = 8/5.
		

Crossrefs

Cf. A167864, A173557, A305444, A307410 (denominators).

Programs

  • Mathematica
    j = {}; Do[prod = 1; Do[If[PrimeQ[n] && IntegerQ[d/n], prod = prod (n - 1)/(n - 2)], {n, 3, d}]; AppendTo[j, prod], {d, 1, 74}]; Numerator[j]
    f[p_, e_] := If[p == 2, 1, (p-1)/(p-2)]; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Mar 03 2025 *)
  • PARI
    a(n) = my(f=factor(n)[,1]); numerator(prod(k=1, #f, if ((p=f[k])>2, (p-1)/(p-2), 1))); \\ Michel Marcus, Feb 05 2025

Formula

a(n) = numerator(A173557(n)/A305444(n)).
a(p^n) = p - 1 for prime p.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A307410(k) = Product_{prime p > 2} (1 + 1/(p*(p-2))) = 1.51478012... (A167864). - Amiram Eldar, Mar 03 2025

A380947 Numerators of rational coefficients which are ratio of Brent's coefficients -A[n,2]/A343480.

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 5, 5, 23, 39, 63, 17, 209, 185, 1207, 127, 765, 15543, 2499, 1139, 2257, 6327, 309, 21527, 2189, 64273, 6127, 883, 21681, 3835077, 30537, 188579, 7091843, 47895, 8447, 556651, 541, 1978953, 22046359, 1726463, 188751, 45916389, 575107, 2289527, 968180019, 283521, 50207679, 7450167293, 385389, 86547757
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2025

Keywords

Comments

Brent's coefficients -A[n,2]/A343480 are rationals = A380947(n)/A380948(n).
Number of primes with distance to next prime = 2*n between two particular numbers j and k is ~ equal Integrate_{s,j,k} Sum_{m,1,m_max} A[n,m]/log(s)^(m+1).
Brent's coefficients A[n,1]/A114907 = B[n,1]/A114907 are equal to A380839(n)/A307410(n).
Real Brent's coefficients A[n,2] = -A343480*A380947(n)/A380948(n).
Integer Brent's coefficients T[n,2] = A381085(n).
Maximal values of the coefficients A380947(n)/A380948(n) occurs when n=105*k where k=1,2,3,4,....
Minimal values of the coefficients A380947(n)/A380948(n) occurs when n=2^k where k=0, 1,2,3,4,....

Crossrefs

Programs

  • Mathematica
    (* starting vector tr2 taken from A381085 *)
    tr2 ={0, 0, 2, 4, 6, 56, 40, 40, 92, 624, 504, 10880, 6688, 7400, 19312};
    ww = {}; long=15;Do[kk = PrimePi[n + 1]; prod = 1;
     Do[prod = prod (Prime[n] - 1), {n, 2, kk}];
     AppendTo[ww, prod], {n, 1, long}]; sr2 = {}; Do[
     AppendTo[sr2, tr2[[n]]/ww[[n]]], {n, 1, long}]; fr2 = {}; uu = {}; Do[
     pr1 = 1; kk = PrimePi[p + 1]; pr3 = 1;
     Do[pr2 = 1; jj = Min[2, Prime[n] - 2];
      Do[pr2 = pr2 (1 - m/((Prime[n] - 1) (Prime[n] - m))), {m, 1, jj}];
      pr1 = pr1 pr2; pr3 = pr3 Prime[n]/(Prime[n] - 1), {n, 2, kk}];
     pr3 = (-2 pr3)^2/pr1; AppendTo[fr2, pr3], {p, 1, long}]; ar2 = {}; Do[
     AppendTo[ar2, fr2[[n]] sr2[[n]]/12], {n, 1, long}]; Numerator[ar2]

A380948 Denominators of rational coefficients which are ratio of Brent's coefficients -A[n,2]/A343480.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 4, 8, 16, 2, 40, 32, 80, 20, 112, 1120, 320, 112, 112, 640, 32, 1120, 160, 5600, 280, 64, 1820, 116480, 2240, 14560, 232960, 3136, 364, 18200, 34, 116480, 618800, 76160, 10640, 1074944, 30464, 110656, 18811520, 13600, 2434432, 181060880, 15232, 3043040
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2025

Keywords

Comments

Brent's coefficients -A[n,2]/A343480 are rationals = A380947(n)/ A380948(n).
Brent's coefficients are used in formulas of number of primes with particular distance to next prime =2*n.
Brent's coefficients A[n,1]/A114907 = B[n,1]/A114907 are equal to A380839(n)/A307410(n).

Crossrefs

Showing 1-3 of 3 results.