cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307411 G.f. A(x) satisfies: A(x) = 1 + x*A(x)*(1 + 2*x*A(x))/(1 - x*A(x) - x^2*A(x)^2).

Original entry on oeis.org

1, 1, 4, 14, 60, 267, 1254, 6071, 30156, 152714, 785682, 4094752, 21573258, 114709363, 614777462, 3317589966, 18011350796, 98307220409, 539121535194, 2969177051678, 16415395615190, 91070109305056, 506843759000184, 2828968117483929, 15831944500607010, 88818114923080102
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2019

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 25; A[] = 0; Do[A[x] = 1 + x A[x] (1 + 2 x A[x])/(1 - x A[x] - x^2 A[x]^2) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
    terms = 26; A[] = 0; Do[A[x] = 1 + Sum[LucasL[k] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
    terms = 26; CoefficientList[1/x InverseSeries[Series[x (1 - x - x^2)/(1 + x^2), {x, 0, terms}], x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} Lucas(k)*x^k*A(x)^k, where Lucas = A000204.
G.f.: A(x) = (1/x)*Series_Reversion(x*(1 - x - x^2)/(1 + x^2)).