A307413
G.f. A(x) satisfies: A(x) = 1 + x*A(x)/(1 - x*A(x) - 2*x^2*A(x)^2).
Original entry on oeis.org
1, 1, 2, 7, 26, 102, 420, 1787, 7794, 34666, 156636, 716982, 3317700, 15494156, 72935624, 345701843, 1648489762, 7902956738, 38067806892, 184152092450, 894259126540, 4357738501844, 21302682030328, 104439435098718, 513390992000340, 2529846489669412, 12494572784556440
Offset: 0
-
terms = 26; A[] = 0; Do[A[x] = 1 + x A[x]/(1 - x A[x] - 2 x^2 A[x]^2) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
terms = 27; A[] = 0; Do[A[x] = 1 + Sum[(1/3) (2^k - (-1)^k) x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
terms = 27; CoefficientList[1/x InverseSeries[Series[x (1 + x) (1 - 2 x)/(1 - 2 x^2), {x, 0, terms}], x], x]
A307412
G.f. A(x) satisfies: A(x) = 1 + x*A(x)/(1 - 2*x*A(x) - x^2*A(x)^2).
Original entry on oeis.org
1, 1, 3, 12, 53, 250, 1234, 6295, 32925, 175616, 951596, 5223658, 28987546, 162349759, 916502869, 5209630108, 29792226533, 171284524184, 989460348216, 5740230703588, 33429379234924, 195361236443008, 1145312096390408, 6733896357727242, 39697441350016170, 234596104853541967
Offset: 0
-
terms = 25; A[] = 0; Do[A[x] = 1 + x A[x]/(1 - 2 x A[x] - x^2 A[x]^2) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
terms = 26; A[] = 0; Do[A[x] = 1 + Sum[Fibonacci[k, 2] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
terms = 26; CoefficientList[1/x InverseSeries[Series[x (1 - 2 x - x^2)/(1 - x - x^2), {x, 0, terms}], x], x]
A307528
G.f. A(x) satisfies: A(x) = 1 + x^2*A(x)^2/(1 - x*A(x) - x^2*A(x)^2 - x^3*A(x)^3).
Original entry on oeis.org
1, 0, 1, 1, 4, 9, 27, 76, 226, 680, 2078, 6441, 20153, 63684, 202732, 649930, 2095854, 6794684, 22131765, 72393439, 237703654, 783198068, 2588645047, 8580674778, 28517805357, 95009277576, 317242351135, 1061500510809, 3558683892258, 11952025977378, 40209157279701
Offset: 0
G.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 9*x^5 + 27*x^6 + 76*x^7 + 226*x^8 + 680*x^9 + 2078*x^10 + ...
-
terms = 31; CoefficientList[1/x InverseSeries[Series[x (1 - x - x^2 - x^3)/(1 - x - x^3), {x, 0, terms}], x], x]
terms = 30; A[] = 0; Do[A[x] = 1 + x^2 A[x]^2/(1 - x A[x] - x^2 A[x]^2 - x^3 A[x]^3) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
terms = 31; t[n_] := t[n] = SeriesCoefficient[x^2/(1 - x - x^2 - x^3), {x, 0, n}]; A[] = 0; Do[A[x] = 1 + Sum[t[k] x^k A[x]^k, {k, 2, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
A307529
G.f. A(x) satisfies: A(x) = (1 - x^2*A(x)^2)/(1 - x^2*A(x)^2 - x^3*A(x)^3).
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 4, 1, 10, 23, 18, 92, 168, 241, 856, 1480, 2904, 8266, 14854, 33496, 83578, 161047, 380488, 884326, 1819714, 4321045, 9730466, 21019404, 49456092, 110408981, 246005440, 572574553, 1281705752, 2906696339, 6711882928, 15128432758, 34625418170
Offset: 0
G.f.: A(x) = 1 + x^3 + x^5 + 4*x^6 + x^7 + 10*x^8 + 23*x^9 + 18*x^10 + 92*x^11 + 168*x^12 + ...
-
terms = 37; CoefficientList[1/x InverseSeries[Series[x (1 - x^2 - x^3)/(1 - x^2), {x, 0, terms}], x], x]
terms = 36; A[] = 0; Do[A[x] = (1 - x^2 A[x]^2)/(1 - x^2 A[x]^2 - x^3 A[x]^3) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
terms = 37; p[n_] := p[n] = SeriesCoefficient[(1 - x^2)/(1 - x^2 - x^3), {x, 0, n}]; A[] = 1; Do[A[x] = Sum[p[k] x^k A[x]^k, {k, 0, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
Showing 1-4 of 4 results.
Comments