A307411
G.f. A(x) satisfies: A(x) = 1 + x*A(x)*(1 + 2*x*A(x))/(1 - x*A(x) - x^2*A(x)^2).
Original entry on oeis.org
1, 1, 4, 14, 60, 267, 1254, 6071, 30156, 152714, 785682, 4094752, 21573258, 114709363, 614777462, 3317589966, 18011350796, 98307220409, 539121535194, 2969177051678, 16415395615190, 91070109305056, 506843759000184, 2828968117483929, 15831944500607010, 88818114923080102
Offset: 0
-
terms = 25; A[] = 0; Do[A[x] = 1 + x A[x] (1 + 2 x A[x])/(1 - x A[x] - x^2 A[x]^2) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
terms = 26; A[] = 0; Do[A[x] = 1 + Sum[LucasL[k] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
terms = 26; CoefficientList[1/x InverseSeries[Series[x (1 - x - x^2)/(1 + x^2), {x, 0, terms}], x], x]
A307412
G.f. A(x) satisfies: A(x) = 1 + x*A(x)/(1 - 2*x*A(x) - x^2*A(x)^2).
Original entry on oeis.org
1, 1, 3, 12, 53, 250, 1234, 6295, 32925, 175616, 951596, 5223658, 28987546, 162349759, 916502869, 5209630108, 29792226533, 171284524184, 989460348216, 5740230703588, 33429379234924, 195361236443008, 1145312096390408, 6733896357727242, 39697441350016170, 234596104853541967
Offset: 0
-
terms = 25; A[] = 0; Do[A[x] = 1 + x A[x]/(1 - 2 x A[x] - x^2 A[x]^2) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
terms = 26; A[] = 0; Do[A[x] = 1 + Sum[Fibonacci[k, 2] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
terms = 26; CoefficientList[1/x InverseSeries[Series[x (1 - 2 x - x^2)/(1 - x - x^2), {x, 0, terms}], x], x]
A326564
O.g.f. A(x) satisfies: 0 = Sum_{n>=1} (b(n) - A(x))^n * (2*x)^n / n, where b(n) = 1 if n is odd or b(n) = 2 if n is even.
Original entry on oeis.org
1, 1, -2, 7, -26, 102, -420, 1787, -7794, 34666, -156636, 716982, -3317700, 15494156, -72935624, 345701843, -1648489762, 7902956738, -38067806892, 184152092450, -894259126540, 4357738501844, -21302682030328, 104439435098718, -513390992000340, 2529846489669412, -12494572784556440, 61838364112438732, -306647601790749384, 1523380558254732312, -7580755340625743760, 37783723921640161923
Offset: 0
O.g.f.: A(x) = 1 + x - 2*x^2 + 7*x^3 - 26*x^4 + 102*x^5 - 420*x^6 + 1787*x^7 - 7794*x^8 + 34666*x^9 - 156636*x^10 + 716982*x^11 - 3317700*x^12 + 15494156*x^13 - 72935624*x^14 + 345701843*x^15 - 1648489762*x^16 + ...
such that
0 = (1 - A(x))*(2*x) + (2 - A(x))^2*(2*x)^2/2 + (1 - A(x))^3*(2*x)^3/3 + (2 - A(x))^4*(2*x)^4/4 + (1 - A(x))^5*(2*x)^5/5 + (2 - A(x))^6*(2*x)^6/6 + (1 - A(x))^7*(2*x)^7/7 + (2 - A(x))^8*(2*x)^8/8 + (1 - A(x))^9*(2*x)^9/9 + ...
SPECIAL ARGUMENTS.
A( (3 - sqrt(17))/6 ) = 1/2.
A( (15 - sqrt(513))/40 ) = 1/3.
ODD TERMS.
The odd numbers occur at positions 2^n-1 and begin
[1, 1, 7, 1787, 345701843, 37783723921640161923, 1297226675901009799785880946943488094880739, 4359630365907394639251834255689265800511483817161978056491648421720696612963282942355107, ...].
-
/* By definition */
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0); A[#A] = polcoeff(sum(m=1, #A, ( ((m+1)%2) + 1 - Ser(A) )^m * (2*x)^m/m), #A)/2); A[n+1]}
for(n=0, 32, print1(a(n), ", "))
-
/* From: A(x) = 2 - (1/x) * Series_Reversion( x + x^2/(1 - 2*x^2) ) */
{a(n) = my(A = 2 - (1/x)*serreverse(x + x^2/(1 - 2*x^2 +x*O(x^n)))); polcoeff(A,n)}
for(n=0, 32, print1(a(n), ", "))
A307528
G.f. A(x) satisfies: A(x) = 1 + x^2*A(x)^2/(1 - x*A(x) - x^2*A(x)^2 - x^3*A(x)^3).
Original entry on oeis.org
1, 0, 1, 1, 4, 9, 27, 76, 226, 680, 2078, 6441, 20153, 63684, 202732, 649930, 2095854, 6794684, 22131765, 72393439, 237703654, 783198068, 2588645047, 8580674778, 28517805357, 95009277576, 317242351135, 1061500510809, 3558683892258, 11952025977378, 40209157279701
Offset: 0
G.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 9*x^5 + 27*x^6 + 76*x^7 + 226*x^8 + 680*x^9 + 2078*x^10 + ...
-
terms = 31; CoefficientList[1/x InverseSeries[Series[x (1 - x - x^2 - x^3)/(1 - x - x^3), {x, 0, terms}], x], x]
terms = 30; A[] = 0; Do[A[x] = 1 + x^2 A[x]^2/(1 - x A[x] - x^2 A[x]^2 - x^3 A[x]^3) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
terms = 31; t[n_] := t[n] = SeriesCoefficient[x^2/(1 - x - x^2 - x^3), {x, 0, n}]; A[] = 0; Do[A[x] = 1 + Sum[t[k] x^k A[x]^k, {k, 2, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
A307529
G.f. A(x) satisfies: A(x) = (1 - x^2*A(x)^2)/(1 - x^2*A(x)^2 - x^3*A(x)^3).
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 4, 1, 10, 23, 18, 92, 168, 241, 856, 1480, 2904, 8266, 14854, 33496, 83578, 161047, 380488, 884326, 1819714, 4321045, 9730466, 21019404, 49456092, 110408981, 246005440, 572574553, 1281705752, 2906696339, 6711882928, 15128432758, 34625418170
Offset: 0
G.f.: A(x) = 1 + x^3 + x^5 + 4*x^6 + x^7 + 10*x^8 + 23*x^9 + 18*x^10 + 92*x^11 + 168*x^12 + ...
-
terms = 37; CoefficientList[1/x InverseSeries[Series[x (1 - x^2 - x^3)/(1 - x^2), {x, 0, terms}], x], x]
terms = 36; A[] = 0; Do[A[x] = (1 - x^2 A[x]^2)/(1 - x^2 A[x]^2 - x^3 A[x]^3) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
terms = 37; p[n_] := p[n] = SeriesCoefficient[(1 - x^2)/(1 - x^2 - x^3), {x, 0, n}]; A[] = 1; Do[A[x] = Sum[p[k] x^k A[x]^k, {k, 0, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
Showing 1-5 of 5 results.
Comments