cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A307413 G.f. A(x) satisfies: A(x) = 1 + x*A(x)/(1 - x*A(x) - 2*x^2*A(x)^2).

Original entry on oeis.org

1, 1, 2, 7, 26, 102, 420, 1787, 7794, 34666, 156636, 716982, 3317700, 15494156, 72935624, 345701843, 1648489762, 7902956738, 38067806892, 184152092450, 894259126540, 4357738501844, 21302682030328, 104439435098718, 513390992000340, 2529846489669412, 12494572784556440
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2019

Keywords

Comments

Unsigned version of A326564. - Paul D. Hanna, Aug 28 2019

Crossrefs

Programs

  • Mathematica
    terms = 26; A[] = 0; Do[A[x] = 1 + x A[x]/(1 - x A[x] - 2 x^2 A[x]^2) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
    terms = 27; A[] = 0; Do[A[x] = 1 + Sum[(1/3) (2^k - (-1)^k) x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
    terms = 27; CoefficientList[1/x InverseSeries[Series[x (1 + x) (1 - 2 x)/(1 - 2 x^2), {x, 0, terms}], x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} Jacobsthal(k)*x^k*A(x)^k, where Jacobsthal = A001045.
G.f.: A(x) = (1/x)*Series_Reversion(x*(1 + x)*(1 - 2*x)/(1 - 2*x^2)).
From Paul D. Hanna, Aug 29 2019: (Start)
G.f. A(x) satisfies: 0 = Sum_{n>=1} (1-(-1)^n - 2*A(x))^n * x^n / n.
G.f. A(x) satisfies: log(1 - 4*x^2*A(x)^2)/2 = arctanh(2*x - 2*x*A(x)). (End)
Showing 1-1 of 1 results.