cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307496 Expansion of Product_{k>=1} (1 + ((1 - sqrt(1 - 4*x))/2)^k).

Original entry on oeis.org

1, 1, 2, 6, 18, 57, 187, 629, 2156, 7502, 26427, 94053, 337653, 1221260, 4445892, 16277089, 59893052, 221370725, 821499759, 3059620076, 11432831745, 42848889316, 161032785057, 606710026659, 2291156662259, 8670805904186, 32879697168622, 124910667052026, 475357627716839, 1811931609379926
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Comments

Catalan transform of A000009 (number of partitions into distinct parts).
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by putting A000009 in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
1
1 1
1 2 2
2 4 6 6
2 6 12 18 18
3 9 21 39 57 57
...
Alternatively, the sequence can be obtained by multiplying A000009 by the array A106566.
(End)

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + ((1 - Sqrt[1 - 4 x])/2)^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[Product[1/(1 - ((1 - Sqrt[1 - 4 x])/2)^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k PartitionsQ[k], {k, n}], {n, 29}]]

Formula

G.f.: Product_{k>=1} 1/(1 - ((1 - sqrt(1 - 4*x))/2)^(2*k-1)).
Sum_{n>=0} a(n)*(x*(1 - x))^n = g.f. of A000009.
a(n) = (1/n) * Sum_{k=1..n} binomial(2*n-k-1,n-k)*k*A000009(k) for n > 0.
a(n) ~ c * 4^n / n^(3/2), where c = 1/sqrt(Pi) * Sum_{k>=0} k*A000009(k)/2^(k+1) = 1.12333545392999500455446757207126193339498222754079045166328600452997969... - Vaclav Kotesovec, Jan 28 2020, extended Aug 01 2022