A307532 a(n) is the smallest k > 2^(2^n)+1 such that 2^(k-1) == 1 (mod (2^(2^n)-1)*k).
5, 7, 29, 281, 65617, 4294967681, 18446744073709552577, 340282366920938463463374607431768211841, 115792089237316195423570985008687907853269984665640564039457584007913129642241
Offset: 0
Keywords
Programs
-
Mathematica
a[n_] := Module[{k = 2^(2^n) + 2}, While[PowerMod[2, k - 1, (2^(2^n) - 1)*k] != 1, k++]; k]; Array[a, 10, 0]
-
PARI
a(n) = my(k=2^(2^n)+2); while( Mod(2, (2^(2^n)-1)*k)^(k-1) != 1, k++); k; \\ Michel Marcus, Apr 25 2019
Formula
a(n) == 1 (mod 2^n).
Extensions
a(8) from Chai Wah Wu, Apr 29 2019
Comments