A307557 Number of Motzkin meanders of length n with no level steps at odd level.
1, 2, 4, 9, 20, 47, 110, 264, 634, 1541, 3754, 9204, 22622, 55817, 138026, 342203, 849984, 2115245, 5271970, 13158944, 32886338, 82285031, 206101422, 516728937, 1296664512, 3256472235, 8184526438, 20584627358, 51805243138, 130456806425, 328703655114
Offset: 0
Keywords
Examples
For n = 3 the a(3) = 9 paths are UUU, UUH, UUD, UDU, UDH, HUU, HUD, HHU, HHH.
Links
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Algorithmica (2019).
Crossrefs
Cf. A307555.
Formula
G.f.: ((1+t)/sqrt((t-1)*(4*t^2+t-1)) -1) / (2*t).
D-finite with recurrence (n+1)*a(n) +(-n-2)*a(n-1) +(-5*n+3)*a(n-2) +(n+4)*a(n-3) +2*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jan 25 2023
a(n) ~ sqrt(13 + 53/sqrt(17)) * (1 + sqrt(17))^n / (sqrt(Pi*n) * 2^(n + 3/2)). - Vaclav Kotesovec, Jun 24 2023
Comments