A325922 Number of Motzkin excursions of length n with an even number of humps and an even number of peaks.
1, 1, 1, 1, 2, 4, 11, 31, 86, 230, 608, 1588, 4151, 10925, 29083, 78373, 213702, 588366, 1631906, 4550346, 12736029, 35746763, 100561622, 283486702, 800798659, 2266802139, 6429960961, 18276530005, 52051825058, 148520257620, 424507695627
Offset: 0
Keywords
Examples
For n=3 the a(5)=4 paths are HHHHH, UDUDH, UDHUD, HUDUD.
Links
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Algorithmica (2019).
Crossrefs
Cf. A325921.
Programs
-
Mathematica
CoefficientList[Series[(4 (1 - 2 x + 2 x^2) - Sqrt[(1 - 2 x - 3 x^2) (1 - x)^2] - Sqrt[(1 - x - 4 x^3) (1 - x)^3] - Sqrt[(1 + x^2) (1 - 4 x + 5 x^2)] - Sqrt[(1 - 2 x) (1 - 2 x - x^2) (1 - x^2 + 2 x^3)]) / (8 x^2 (1 - x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 30 2019 *)
Formula
G.f.: (4*(1-2*t+2*t^2) - sqrt((1-2*t-3*t^2)*(1-t)^2) - sqrt((1-t-4*t^3)*(1-t)^3) - sqrt((1+t^2)*(1-4*t+5*t^2)) - sqrt((1-2*t)*(1-2*t-t^2)*(1-t^2+2*t^3)) ) / (8*t^2*(1-t)).
a(n) ~ 3^(n + 3/2) / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 03 2019
Comments