A307563 Numbers k such that both 6k - 1 and 6k + 7 are prime.
1, 2, 4, 5, 9, 10, 12, 15, 17, 22, 25, 29, 32, 39, 44, 45, 60, 65, 67, 72, 75, 80, 82, 94, 95, 99, 100, 109, 114, 117, 120, 124, 127, 137, 152, 155, 164, 169, 172, 177, 185, 194, 199, 204, 205, 214, 215, 220, 229, 240, 242, 247, 254, 260, 262, 267, 269, 270, 289, 304, 312, 330, 334, 347, 355, 359, 369, 374, 379, 389
Offset: 1
Keywords
Examples
a(4) = 5, so 6(5) - 1 = 29 and 6(5) + 7 = 37 are both prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Sally M. Moite, “Primeless” Sieves for Primes and for Prime Pairs Which Differ by 2m, vixra:1903.0353 (2019).
Crossrefs
Programs
-
Maple
select(t -> isprime(6*t-1) and isprime(6*t+7), [$1..500]); # Robert Israel, May 27 2019
-
PARI
isok(n) = isprime(6*n-1) && isprime(6*n+7); \\ Michel Marcus, Apr 16 2019
Comments