cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307563 Numbers k such that both 6k - 1 and 6k + 7 are prime.

Original entry on oeis.org

1, 2, 4, 5, 9, 10, 12, 15, 17, 22, 25, 29, 32, 39, 44, 45, 60, 65, 67, 72, 75, 80, 82, 94, 95, 99, 100, 109, 114, 117, 120, 124, 127, 137, 152, 155, 164, 169, 172, 177, 185, 194, 199, 204, 205, 214, 215, 220, 229, 240, 242, 247, 254, 260, 262, 267, 269, 270, 289, 304, 312, 330, 334, 347, 355, 359, 369, 374, 379, 389
Offset: 1

Views

Author

Sally Myers Moite, Apr 14 2019

Keywords

Comments

There are 140 such numbers between 1 and 1000.
These numbers correspond to all the prime pairs which differ by 8 except 3 and 11.
Numbers in this sequence are those which are not 6cd - c - d - 1, 6cd + c - d, 6cd - c + d or 6cd + c + d - 1, that is, they are not (6c - 1)d - c - 1, (6c - 1)d + c, (6c + 1)d - c or (6c + 1)d + c - 1.

Examples

			a(4) = 5, so 6(5) - 1 = 29 and 6(5) + 7 = 37 are both prime.
		

Crossrefs

The primes are A023202, A092402, A031926.
Similar sequences for twin primes are A002822, A067611, for "cousin" primes A056956, A186243.
Intersection of A024898 and A153218.
Cf. also A307561, A307562.

Programs

  • Maple
    select(t -> isprime(6*t-1) and isprime(6*t+7), [$1..500]); # Robert Israel, May 27 2019
  • PARI
    isok(n) = isprime(6*n-1) && isprime(6*n+7); \\ Michel Marcus, Apr 16 2019