cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307575 Number of Motzkin meanders of length n with an even number of peaks.

Original entry on oeis.org

1, 2, 4, 9, 22, 56, 148, 402, 1112, 3118, 8832, 25205, 72342, 208560, 603404, 1750785, 5092046, 14839710, 43321976, 126661355, 370813762, 1086877792, 3189091724, 9366371000, 27533212140, 81001276874, 238478223648, 702592110803, 2071257446234, 6109731270056
Offset: 0

Views

Author

Andrei Asinowski, Apr 15 2019

Keywords

Comments

A Motzkin meander is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), and never goes below the x-axis.
A peak is an occurrence of the pattern UD.

Examples

			For n = 3 the a(3) = 9 paths are UUU, UUH, UHU, UHH, UHD, HUU, HUH, HHU, HHH.
		

Crossrefs

Cf. A001006.

Programs

  • Maple
    b:= proc(x, y, t, c) option remember; `if`(y<0, 0, `if`(x=0, 1-c,
          b(x-1, y-1, 0, irem(c+t, 2))+b(x-1, y, 0, c)+b(x-1, y+1, 1, c)))
        end:
    a:= n-> b(n, 0$3):
    seq(a(n), n=0..35);  # Alois P. Heinz, Apr 16 2019
  • Mathematica
    b[x_, y_, t_, c_] := b[x, y, t, c] = If[y < 0, 0, If[x == 0, 1-c, b[x-1, y-1, 0, Mod[c+t, 2]] + b[x-1, y, 0, c] + b[x-1, y+1, 1, c]]];
    a[n_] := b[n, 0, 0, 0];
    a /@ Range[0, 35] (* Jean-François Alcover, May 12 2020, after Maple *)

Formula

G.f.: (sqrt((1+t)*(1-3*t))/(1-3*t) + sqrt((1-t)*(1-2*t)*(1+t+2*t^2))/((1-t)*(1-2*t)) -2) / (4*t).
D-finite with recurrence -3*(n+1)*(n-2)*a(n) +4*(4*n^2-7*n-3)*a(n-1) +3*(-7*n^2+17*n-2)*a(n-2) +4*n*(n-3)*a(n-3) -(n-3)*(25*n-82)*a(n-4) +4*(n-3)*(6*n-19)*a(n-5) +(61*n^2-575*n+1302)*a(n-6) -4*(11*n-37)*(n-6)*a(n-7) -12*(n-6)*(n-7)*a(n-8)=0. - R. J. Mathar, Mar 06 2022
a(n) + A307577(n) = A005773(n+1). - R. J. Mathar, Jan 25 2023