A307577 Number of Motzkin meanders of length n with an odd number of peaks.
0, 0, 1, 4, 13, 40, 119, 348, 1011, 2928, 8471, 24516, 71023, 206024, 598513, 1741332, 5073733, 14804160, 43252855, 126526756, 370551287, 1086365336, 3188090101, 9364411252, 27529374201, 80993754352, 238463467529, 702563144252, 2071200546129, 6109619428824
Offset: 0
Keywords
Examples
For n = 3 the a(3) = 4 paths are UDH, HUD, UDU, UUD.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger. Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Algorithmica (2019).
Crossrefs
Cf. A001006.
Programs
-
Maple
b:= proc(x, y, t, c) option remember; `if`(y<0, 0, `if`(x=0, c, b(x-1, y-1, 0, irem(c+t, 2))+b(x-1, y, 0, c)+b(x-1, y+1, 1, c))) end: a:= n-> b(n, 0$3): seq(a(n), n=0..35); # Alois P. Heinz, Apr 16 2019
-
Mathematica
b[x_, y_, t_, c_] := b[x, y, t, c] = If[y<0, 0, If[x==0, c, b[x-1, y-1, 0, Mod[c+t, 2]] + b[x-1, y, 0, c] + b[x-1, y+1, 1, c]]]; a[n_] := b[n, 0, 0, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Apr 29 2019, after Alois P. Heinz *)
Formula
G.f.: (sqrt((1+t)*(1-3*t))/(1-3*t) - sqrt((1-t)*(1-2*t)*(1+t+2*t^2))/((1-t)*(1-2*t))) / (4*t).
Comments