cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307609 Number of partitions of n^3 into consecutive positive cubes.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Examples

			20^3 = 11^3 + 12^3 + 13^3 + 14^3, so a(20) = 2.
2856^3 = 213^3 +...+ 555^3 = 273^3 +...+ 560^3, so a(2856) = 3. See also _Donovan Johnson_'s comment in A097811. - _Antti Karttunen_, Aug 22 2019
		

Crossrefs

Programs

  • PARI
    A297199(n) = { my(s=0, k=1, c); while((c=k^3) <= n, my(u=n-c, i=k); while(u>0, i++; c = i^3; u=u-c); s += (!u); k++); (s); };
    A307609(n) = A297199(n^3); \\ Antti Karttunen, Aug 22 2019

Formula

a(n) = [x^(n^3)] Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k^3).
a(n) = A297199(A000578(n)).
a(n) >= 2 for n in A097811.