A307609 Number of partitions of n^3 into consecutive positive cubes.
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
20^3 = 11^3 + 12^3 + 13^3 + 14^3, so a(20) = 2. 2856^3 = 213^3 +...+ 555^3 = 273^3 +...+ 560^3, so a(2856) = 3. See also _Donovan Johnson_'s comment in A097811. - _Antti Karttunen_, Aug 22 2019
Links
Programs
-
PARI
A297199(n) = { my(s=0, k=1, c); while((c=k^3) <= n, my(u=n-c, i=k); while(u>0, i++; c = i^3; u=u-c); s += (!u); k++); (s); }; A307609(n) = A297199(n^3); \\ Antti Karttunen, Aug 22 2019