A307643 Number of partitions of n^3 into exactly n positive cubes.
1, 1, 0, 0, 0, 0, 1, 0, 2, 6, 14, 23, 51, 108, 228, 511, 1158, 2500, 5603, 12304, 26969, 59222, 130115, 285370, 624965, 1368603, 2987117, 6517822, 14187920, 30823278, 66834822, 144671698, 312551894, 673913968, 1450292087, 3114720013, 6676277754, 14281662079
Offset: 0
Keywords
Examples
9^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 8^3 = 1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 = 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 7^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 7^3, so a(9) = 6.
Links
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+ `if`(i^3>n, 0, b(n-i^3, i, t-1)))) end: a:= n-> b(n^3, n$2): seq(a(n), n=0..25); # Alois P. Heinz, Oct 12 2019
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^3 > n, 0, b[n - i^3, i, t - 1]]]]; a[n_] := b[n^3, n, n]; a /@ Range[0, 25] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
Formula
a(n) = A320841(n^3,n).
Extensions
More terms from Vaclav Kotesovec, Apr 20 2019