cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307674 L.g.f.: log(Product_{k>=1} 1/(1 - x^k/(1 - x))) = Sum_{k>=1} a(k)*x^k/k.

Original entry on oeis.org

1, 5, 13, 29, 56, 107, 197, 365, 679, 1280, 2432, 4679, 9075, 17729, 34823, 68701, 135967, 269765, 536200, 1067284, 2126648, 4240978, 8462667, 16895039, 33742281, 67408931, 134697820, 269204657, 538104774, 1075723097, 2150667905, 4300088957, 8598178019
Offset: 1

Views

Author

Seiichi Manyama, Apr 21 2019

Keywords

Examples

			L.g.f.: L(x) = x/1 + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 56*x^5/5 + 107*x^6/6 + 197*x^7/7 + 365*x^8/8 + ... .
exp(L(x)) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 35*x^5 + 76*x^6 + 162*x^7 + 342*x^8 + ... + A227682(n)*x^n + ... .
		

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(log(1/prod(k=1, N, 1-x^k/(1-x)))))
    
  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(sum(k=1, N, x^k*sumdiv(k, d, 1/(d*(1-x)^d)))))

Formula

Product {k>=1} 1/(1 - x^k/(1 - x)) = exp(Sum_{k>=1} a(k)*x^k/k).