A307688 a(n) = 2*a(n-1)-2*a(n-2)+a(n-3)+2*a(n-4) with a(0)=a(1)=0, a(2)=2, a(3)=3.
0, 0, 2, 3, 2, 0, 3, 14, 26, 27, 22, 44, 123, 234, 310, 363, 586, 1224, 2259, 3382, 4642, 7227, 13070, 23092, 36555, 54450, 85022, 143883, 245282, 396720, 616803, 973214, 1600106, 2664027, 4334662, 6887804, 10970523, 17828154, 29272390, 47634603, 76493626
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Autosequence
- Index entries for linear recurrences with constant coefficients, signature (2,-2,1,2).
Crossrefs
Programs
-
Mathematica
a[0] = a[1] = 0; a[2] = 2; a[3] = 3; a[n_] := a[n] = 2*a[n-1] - 2*a[n-2] + a[n-3] + 2*a[n-4]; Table[a[n], {n, 0, 40}] LinearRecurrence[{2,-2,1,2},{0,0,2,3},50] (* Harvey P. Dale, Oct 01 2021 *)
-
PARI
concat([0,0], Vec(x^2*(2 - x) / ((1 - x - x^2)*(1 - x + 2*x^2)) + O(x^40))) \\ Colin Barker, Apr 22 2019
Formula
G.f.: x^2*(2 - x) / ((1 - x - x^2)*(1 - x + 2*x^2)). - Colin Barker, Apr 22 2019
Comments